K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 8 2017

\(\frac{a}{b}>\frac{c}{d}\)

\(\Rightarrow ad>bc\)

\(\Rightarrow ad+ab>bc+ab\)

\(\Rightarrow a\left(b+d\right)>b\left(a+c\right)\)

\(\Rightarrow\frac{a}{b}>\frac{a+c}{b+d}\)( 1 )

\(\Rightarrow ad+cd>bc+cd\)

\(\Rightarrow d\left(a+c\right)>c\left(b+d\right)\)

\(\Rightarrow\frac{a+c}{b+d}>\frac{c}{d}\)( 2 )

Từ ( 1 ) và ( 2 ) \(\Rightarrow\frac{a}{b}>\frac{a+c}{b+d}>\frac{c}{d}\)

11 tháng 3 2017

\(\frac{a+b}{b+c}=\frac{c+d}{d+a}=\frac{a+b+c+d}{b+c+d+a}=1\) (dãy tỉ số bằng nhau)

\(\Rightarrow\frac{a+b}{a+c}=1\Leftrightarrow a+b=b+c\Rightarrow a=c\)(đpcm)

11 tháng 3 2017

cảm ơn nhé

16 tháng 7 2015

Đặt \(\frac{a}{b}=\frac{c}{d}=t\Rightarrow a=bt;c=dt\)

Thay vào từng vế ta có 

     \(\frac{a.b}{c.d}=\frac{bt.b}{dt.d}=\frac{b^2.t}{d^2.t}=\frac{b^2}{d^2}\) (1)

     \(\frac{\left(bt+b\right)^2}{\left(dt+d\right)^2}=\frac{b^2\left(t+1\right)^2}{d^2\left(t+1\right)^2}=\frac{b^2}{d^2}\) (2)

Từ (1) và (2) => ĐPCM

23 tháng 9 2017

a/b=c/d 
=> a/c = b/d
Áp dụng tính chất dãy tỉ số bằng nhau có : 
a/c = b/d = a+b/c+d
=> (a/c)mũ 2 = (b/d)mũ 2 = a/c.b/d= ( a+b/c+d ) mũ 2 
=>   a/c.b/d= ( a+b/c+d ) mũ 2 
=> a.b/c.d = (a+b)mũ 2 / (c + d ) mũ 2 
=> dpcm

7 tháng 6 2017

đề bài có bị lỗi ko bạn

7 tháng 6 2017

đề bài có lỗi ko bạn

8 tháng 10 2021

Ta có: \(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{b}{a}=\dfrac{d}{c}\)

   \(\Leftrightarrow1+\dfrac{b}{a}=1+\dfrac{d}{c}\)

   \(\Leftrightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\)

8 tháng 10 2021

\(\dfrac{a}{b}=\dfrac{c}{d}\Leftrightarrow\dfrac{a}{c}=\dfrac{b}{d}\)

Áp dụng t/c dtsbn:

\(\dfrac{a}{c}=\dfrac{b}{d}=\dfrac{a+b}{c+d}\Leftrightarrow\dfrac{a+b}{a}=\dfrac{c+d}{c}\)

13 tháng 3 2023

\(b^2=ca\Rightarrow\dfrac{b}{c}=\dfrac{a}{b}\) ; \(c^2=bd\Rightarrow\dfrac{b}{c}=\dfrac{c}{d}\).

\(\Rightarrow\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}\)

Áp dụng tính chất của dãy tỉ số bằng nhau ta được:

\(\dfrac{a}{b}=\dfrac{b}{c}=\dfrac{c}{d}=\dfrac{a+b-c}{b+c-d}\)

\(\Rightarrow\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}\)

Áp dụng như trên ta được:

\(\dfrac{a^3}{b^3}=\dfrac{b^3}{c^3}=\dfrac{c^3}{d^3}=\dfrac{a^3+b^3-c^3}{b^3+c^3-d^3}\)

\(\Rightarrow\dfrac{\left(a+b-c\right)^3}{\left(b+c-d\right)^3}=\dfrac{a^3+b^3-c^3}{b^3+d^3-d^3}\)

(tất nhiên để áp dụng như trên thì a,b,c,d phải khác 0).

 

24 tháng 10 2017

\(\frac{a+b}{c+d}=\frac{b+c}{d+a}\)

<=>\(\frac{a+b}{c+d}+1=\frac{b+c}{d+a}+1\)

<=> \(\frac{a+b+c+d}{c+d}=\frac{a+b+c+d}{d+a}\)

<=> \(\frac{a+b+c+d}{c+d}-\frac{a+b+c+d}{d+a}=0\)

<=> \(\left(a+b+c+d\right)\left(\frac{1}{c+d}-\frac{1}{d+a}\right)=0\)

<=> \(\orbr{\begin{cases}a+b+c+d=0\\\frac{1}{c+d}-\frac{1}{d+a}=0\end{cases}\Leftrightarrow\orbr{\begin{cases}a+b+c+d=0\\c=a\end{cases}\left(đpcm\right)}}\)

1 tháng 8 2015

Đặt = t => a = bt ; c = dt thay vào từng vế  

22 tháng 12 2015

Đặt a/b=c/d= t suy ra a=bt; c=dt

(a+b)/(a-b)= bt+b/bt-b = b(t+1)/b(t-1)=t+1/t-1 (1)

(c+d)/(c-d)= dt+d/dt-d = d(t+1)/d(t-1)=t+1/t-1 (2)

Từ (1) và (2) suy ra (a+b)/(a-b)= (c+d)/(c-d)