Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có :
\(x^2+x+1\)
\(=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}\)
\(=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}\ge\dfrac{3}{4}>0\left(đpcm\right)\)
Chỉ khi x + y + z = 0 mới như vậy.
Cụ thể :
Ta có :
\(x^3+y^3+z^3-3xyz\)
\(=\left(x+y\right)^3+z^3-3xy^2-3x^2y-3xyz\)
\(=\left(x+y+z\right)\left[\left(x+y\right)^2+z^2-\left(x+y\right)z\right]-3xy\left(x+y+z\right)\)
\(=\left(x+y+z\right)\left[x^2+y^2+2xy+z^2-xz-yz-3xy\right]\)
\(=0\) là BS xyz
a: a^3-a=a(a^2-1)
=a(a-1)(a+1)
Vì a;a-1;a+1 là ba số liên tiếp
nên a(a-1)(a+1) chia hết cho 3!=6
=>a^3-a chia hết cho 6
a.(n+6)^2-(n-6)^2
=n^2+2*2*6+6^2-n^2-2*2*6+6^2
=6^2+6^2
=36+36
=74
mà 74=24*3
=> (2+6)^2-(n-6)^2 chia hết cho 24
đặt M là n^3 -9n^2+2n.
TH1 : n có dạng 2k => M chia hết cho 2 (bạn tự cm)
TH2 ; n có dạng 2k+1 => M = (2k+1)^3-9(2k+1)^2+2n
=8k^3+6k+12k^2+1-9(4k^2+4k+1)+2n = ... => M chia hết cho 2 với mọi n (1)
Xét n có dạng 3k => M chia hết cho 3
Xét n có dạng 3k+1 => n^3+2n=(3k+1)^3+2(3k+1)=27k^3+9k+27k^2+6k+3 chia hết cho 3 mà 9n^2 cũng chia hết cho 3 => M chia hết cho 3
Tương tự bạn xét n =3k+2....
=> M chia hết cho 3 vs mọi n (2)
Từ (1) và (2) => M chia hết cho 6
bạn ơi bạn chỉ cần biến đổi làm sao cho nguyên vế đó trở thành dạng 5 x ( ...) hoặc là bạn nói nó là bội của 5 thì bạn sẽ kết luận được nó chia hết cho 5 nhé , còn chia hết cho 2 cũng vậy đấy !
bạn hãy nhân đa thức với đa thức nhé !
Mình hướng dẫn bạn rồi đấy ! ok!
k nha !
chết lộn
làm lại này
\(a^3+5a\Rightarrow1.a^3+5a\)
=> \(a^2\left(a5+1\right)\Rightarrow a^2\left(a6\right)\Rightarrow a^2\left(a6\right)⋮6\)
Câu kia, sai nhé
\(a^3+5a\Rightarrow1.a^3+5a\)
=>\(a^2.\left(a5+1\right)\)
=> \(a^2.\left(a6\right)\)
Vậy \(a^2.\left(a6\right)\)\(⋮\)6
~~~ Nếu sai thì bỏ qua, tại lớp 7 nên không chắc~~~~~