K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 10 2021

\(a^2\left(a+1\right)+2a\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\) là 3 số nguyên liên tiếp nên chia hết cho 6

a: a^3-a=a(a^2-1)

=a(a-1)(a+1)

Vì a;a-1;a+1 là ba số liên tiếp

nên a(a-1)(a+1) chia hết cho 3!=6

=>a^3-a chia hết cho 6

4 tháng 3 2021

\(a^3 - a = a(a^2-1) = a(a-1)(a+1) = (a-1)a(a+1)\)

Tích hai số tự nhiên liên tiếp luôn chia hết cho 2 :

 \((a-1)a\) ⋮ 2 (1)

Tích ba số tự nhiên liên tiếp luôn chia hết cho 3 : 

\((a-1)a(a+1)\) ⋮ 3(2)

Từ (1)(2) suy ra: điều phải chứng minh

30 tháng 5 2015

A=(x+y)(x+2y)(x+3y)(x+4y)+y4

A=(x+y)(x+4y).(x+2y)(x+3y)+y4

A=(x2+5xy+4y2)(x2+5xy+6y2)+y4

A=(x2+5xy+ 5y2 - y2 )(x2+5xy+5y2+y2)+y4

A=(x2+5xy+5y2)2-y4+y4

A=(x2+5xy+5y2)2

Do x,y,Z nen x2+5xy+5y2 Z

​A là số chính phương 

30 tháng 5 2015

a) Ta có: A= (x+y)(x+2y)(x+3y)(x+4y)+y4

                = (x2 + 5xy + 4y2)( x2 + 5xy + 6y2) + y2 
Đặt x2 + 5xy + 5y2 = h ( h thuộc Z):
A = ( h - y2)( h + y2) + y2 = h2 – y2 + y2 = h2 = (x2 + 5xy + 5y2)2
Vì x, y, z  thuộc Z nên xthuộc Z, 5xy thuộc Z, 5y2 thuộc Z . Suy ra x2 + 5xy + 5ythuộc  Z
Vậy A là số chính phương.

 

28 tháng 9 2019

\(a^2\left(a+1\right)+2a\left(a+1\right)=\left(a^2+2a\right)\left(a+1\right)=a\left(a+1\right)\left(a+2\right)\)

Tích 3 số tự nhiên liên tiếp chia hết cho 3 và có ít nhất 1 số chẵn nên \(a\left(a+1\right)\left(a+2\right)⋮6\)

Vậy \(a^2\left(a+1\right)+2a\left(a+1\right)⋮6\left(đpcm\right)\)

NM
24 tháng 7 2021

ta có :

\(a^3-a=a\left(a^2-1\right)=a\left(a-1\right)\left(a+1\right)\) là tích của ba số nguyên liên tiếp nên \(a^3-a\text{ chia hết cho 6}\)

ta có : \(a^5-a=a\left(a^4-1\right)=a\left(a-1\right)\left(a+1\right)\left(a^2+1\right)\)

ta có tích trên chia hết cho 6 do chứng minh ở ý trên, ta cần chỉ ra nó chia hết cho 5 nữa.

thật vậy: nếu a=5q hoặc a=5q+1 hoặc a=5q+4 thì a(a-1)(a+1) chia hết cho 5

nếu a=5q+2 hoặc a=5q+3 thì \(a^2+1\text{ chia hết cho 5}\)

vậy \(a^5-a\text{ chia hết cho 30}\)

24 tháng 7 2021

Ta có  a3 - a = a(a2 - 1) = (a - 1)a(a + 1) \(⋮6\)(tích 3 số nguyên liên tiếp)

Ta có a5  - a = a(a4 - 1) = a(a2 - 1)(a2 + 1) = (a - 1)a(a + 1)(a2 + 1) 

= (a - 1)a(a + 1)(a2 - 4 + 5) 

= (a - 1)a(a + 1)(a2 - 4) + 5(a - 1)a(a + 1)

= (a - 2)(a - 1)a(a + 1)(a + 2) + 5(a - 1)a(a + 1)

Nhận thấy (a - 1)a(a + 1) \(⋮\)6

=> 5(a - 1)a(a + 1) \(⋮\)30

Lại có (a - 2)(a - 1)a(a + 1)(a + 2) \(⋮30\)(tích 5 số nguyên liên tiếp) 

=> a - 2)(a - 1)a(a + 1)(a + 2) + 5(a - 1)a(a + 1) \(⋮\)30

=> a5 - a \(⋮30\)