Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
Giả sử tồn tại 7 số không thỏa mãn điều kiện đề bài. Không mất tính quát, ta coi rằng \(x_1< x_2< ...< x_7\)
Do 7 số đã cho là các số nguyên dương nên :
\(x_2\ge x_1+1\)
\(x_3+x_1\ge4x_2\ge4\left(x_1+1\right)\Rightarrow x_3\ge3x_1+4\)
\(x_4+x_1\ge4x_3\ge4\left(3x_1+4\right)\Rightarrow x_4\ge11x_1+16\)
\(x_5+x_1\ge4x_4\ge4\left(11x_1+16\right)\Rightarrow x_5\ge43x_1+64\)
\(x_6+x_1\ge4x_5\ge4\left(43x_1+64\right)\Rightarrow x_6\ge171x_1+256\)
\(x_7+x_1\ge4x_6\ge4\left(171x_1+256\right)\Rightarrow x_7\ge683x_1+1024\)
Do x1 là số nguyên dương nên \(x_1\ge1\Rightarrow x_7\ge683+1024=1707>1706\) (Vô lý)
Vậy nên phải tồn tại bộ ba số thỏa mãn yêu cầu của đề bài.
Ta viết lại bất đẳng thức cần chứng mình là:
\(a^2+2\left(bc-b-c\right)a+b^2+c^2-2bc+1\ge0\)
Xét: \(f\left(a\right)=a^2+2\left(bc-b-c\right)a+b^2+c^2-2bc+1\)
Ta thấy nếu \(bc-b-c\ge0\)khi đó ta luôn có \(f\left(a\right)\ge0\)hay:
\(a^2+2\left(bc-b-c\right)a+b^2+c^2-2bc+1\ge0\)
Bây giờ xét trường hợp sau: \(bc-b-c\le0\)
Khi đó ta có:\(\Delta_a=\left(bc-b-c\right)^2-\left(b^2+c^2-2bc+1\right)\)
Mà số hạng từ bậc 2 là số dương để \(f\left(a\right)\ge0\)thì ta phải chỉ ra được:
\(\Delta_a=\left(bc-b-c\right)^2-\left(b^2+c^2-2bc+1\right)\le0\)
Hay \(bc\left(b-2\right)\left(c-2\right)-1\le0\)
Để ý \(bc-b-c\le0\)ta được \(\left(b-1\right)\left(c-1\right)\le1\)lúc này khả năng xảy ra các trường hợp sau:
- Cả \(\left(b-1\right);\left(c-1\right)\)cùng nhỏ hơn 1 hay cả b,c nhỏ hơn 2 và theo bất đẳng thức Cô si ta được:
\(b\left(2-b\right)\le\frac{\left(b+2-b\right)^2}{4}=1;c\left(2-c\right)\le\frac{\left(c+2-c\right)^2}{4}=1\)
\(\Rightarrow bc\left(b-2\right)\left(c-2\right)\le1\)nên ta có \(bc\left(b-2\right)\left(c-2\right)-1\le0\)
Trong 2 số \(\left(b-1\right);\left(c-1\right)\)có một số lớn hơn 1 và một số nhỏ hơn 1 khi đó trong b,c có số lớn hơn hoặc nhỏ hơn 2
\(\Rightarrow bc\left(b-2\right)\left(c-2\right)\le0\Leftrightarrow bc\left(b-2\right)\left(c-2\right)-1\le0\)
Vậy cả 2 khả năng đều cho \(\Delta_a\le0\)nên bất đẳng thức đã được chứng minh. Bài toán đã được chứng mình xong.
Lời giải:
Dấu "=" không xảy ra.
Áp dụng BĐT AM-GM:
\(\text{VT}\leq \frac{a+(b+1)}{2}+\frac{b+(c+1)}{2}+\frac{c+(a+1)}{2}=\frac{2(a+b+c)+3}{2}\)
\(< \frac{3(a+b+c+ab+bc+ac+abc+1)}{2}=\frac{3(a+1)(b+1)(c+1)}{2}\)
Ta có đpcm.
Lần sau bạn lưu ý đăng 1 bài 1 lần thôi. Đăng nhiều lần coi như spam và sẽ bị xóa không thương tiếc đấy nhé.
áp dụng cách đánh giá :
\(3\left(\frac{a^2+b^2}{2}+\frac{b^2+c^2}{2}+\frac{c^2+a^2}{2}\right)\ge\)\(\left(\sqrt{\frac{a^2+b^2}{2}\sqrt{\frac{b^2+c^2}{2}+\sqrt{\frac{c^2+a^2}{2}}}}\right)\)
\(hay\sqrt{3\left(a^2+b^2+c^2\right)\ge\sqrt{\frac{a^2+b^2}{2}+\sqrt{\frac{b^2+c^2}{2}+\sqrt{\frac{c^2+a^2}{2}}}}}\)
Ta cần chỉ ra được :\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
Ta đánh giá theo bất đẳng thức Bunhiacopxki dạng phân thức, cần chú ý đến \(a^2+b^2+c^2\)Ta được :
\(\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}=\frac{a^4}{a^2b}+\frac{b^4}{b^2c}+\frac{c^4}{c^2a}\ge\frac{\left(a^2+b^2+c^2\right)^2}{a^2b+b^2c+c^2a}\)
ta cần chứng minh được :
\(\frac{\left(a^2+b^2+c^2\right)}{a^2b+b^2c+c^2a}\ge\sqrt{3\left(a^2+b^2+c^2\right)}\)
\(hay\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b+b^2c+c^2a\right)^2\)
Dễ thấy\(\left(a^2+b^2+c^2\right)^2\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\)
Do đó\(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b^2+b^2c^2+c^2a^2\right)\left(a^2+b^2+c^2\right)\)
Theo bất đẳng thức Bunhiacopxki
\(\left(a^2b^2+b^2c^2+c^2a^2\right)\left(a^2+b^2+c^2\right)\ge\left(a^2b+b^2c+c^2a\right)^2\)
Do đó ta được
\(\left(a^2+b^2+c^2\right)^3\ge3\left(a^2b+b^2c+c^2a\right)^2\)
Bài toán được chứng minh :333!~
Phân tích bài toán.
Ta làm 2 vế đẳng thức xuất hiện đại lượng kiểu\(\left(a-b\right)^2;\left(b-c\right)^2;\left(c-a\right)^2\)
Để biến đổi vế trái ta sẽ được:
\(\frac{a^2}{b}-2a+b+\frac{b^2}{c}-2b+c+\frac{c^2}{a}-2c+a=\frac{\left(a-b\right)^2}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{c}\)
\(\Rightarrow\frac{a^2}{b}+\frac{b^2}{c}+\frac{c^2}{a}=\frac{\left(a-b\right)^2}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{c}-\left(a+b+c\right)\)
Để biến đổi vế phải ta sẽ được:
\(\frac{\left(a-b\right)^2}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}+\frac{\left(b-c\right)^2}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}+\frac{\left(c-a\right)^2}{2\sqrt{2\left(c^2+a^2\right)}+2\left(c+a\right)}\)
Đến đây ta chỉ cần chỉ ra được \(\frac{1}{b}-\frac{1}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}\ge0\)
Bài làm:
Bất đẳng thức cần chứng mình tương đương với:
\(\frac{a^2}{b}-2a+b+\frac{b^2}{c}-2b+c+\frac{c^2}{a}-2c+a\ge\)
\(\sqrt{\frac{a^2+b^2}{2}}+\sqrt{\frac{b^2+c^2}{2}}+\sqrt{\frac{c^2+a^2}{2}}-\left(a+b+c\right)\)
\(\Leftrightarrow\frac{\left(a-b\right)^1}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{c}\ge\)
\(\sqrt{\frac{a^2+b^2}{2}}-\frac{a^2+b^2}{2}+\sqrt{\frac{b^2+c^2}{2}}-\frac{b^2+c^2}{2}+\sqrt{\frac{c^2+a^2}{2}}-\frac{c+a}{2}\)
\(\Leftrightarrow\frac{\left(a-b\right)^1}{b}+\frac{\left(b-c\right)^2}{c}+\frac{\left(c-a\right)^2}{c}\ge\)
\(\frac{\left(a-b\right)^2}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}+\frac{\left(b-c\right)^2}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}+\frac{\left(c-a\right)^2}{2\sqrt{2\left(c^2+a^2\right)}+2\left(c+a\right)}\)
\(\Leftrightarrow\left(a-b\right)^2\left[\frac{1}{b}-\frac{1}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}\right]+\left(b-c\right)^2\left[\frac{1}{c}-\frac{1}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}\right]\)
\(+\left(c-a\right)^2\left[\frac{1}{c}-\frac{1}{2\sqrt{2\left(c^2+a^2\right)+2\left(c+a\right)}}\right]\ge0\)
Đặt:
\(A=\frac{1}{b}-\frac{1}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}\)
\(B=\frac{1}{c}-\frac{1}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}\)
\(C=\frac{1}{c}-\frac{1}{2\sqrt{2\left(c^2+a^2\right)+2\left(c+a\right)}}\)
Chứng mình hoàn tất nếu ta chứng mình được A,B.C\(\ge\)0, Vậy:
\(A=\frac{1}{b}-\frac{1}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}=\frac{2\sqrt{2\left(a^2+b^2\right)}+2a+b}{2\sqrt{2\left(a^2+b^2\right)}+2\left(a+b\right)}>0\)
\(B=\frac{1}{c}-\frac{1}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}=\frac{2\sqrt{2\left(b^2+c^2\right)}+2b+c}{2\sqrt{2\left(b^2+c^2\right)}+2\left(b+c\right)}>0\)
\(C=\frac{1}{c}-\frac{1}{2\sqrt{2\left(c^2+a^2\right)+2\left(c+a\right)}}=\frac{2\sqrt{2\left(c^2+a^2\right)+2c+a}}{2\sqrt{2\left(c^2+a^2\right)+2\left(c+a\right)}}>0\)
Vậy biểu thức đã được chứng minh.
Đặt \(x=\frac{2a}{b+c};y=\frac{2b}{c+a};z=\frac{2c}{a+b}\)thì ta có \(xy+yz+zx+xyz=4\)
Bất đẳng thức cần chứng minh trở thành: \(x^2+y^2+z^2+5xyz\ge4\)
Đặt \(x+y+z=p;xy+yz+zx=q;xyz=r\)thì \(q+r=4\)và ta cần chứng minh \(p^2-2q+5r\ge8\)
\(\Leftrightarrow p^2-2q+5\left(r-4\right)+12\ge0\Leftrightarrow p^2-7q+12\ge0\)
*) Nếu \(4\ge p\)thì theo Schur, ta có: \(r\ge\frac{p\left(4q-p^2\right)}{9}\Leftrightarrow4\ge q+\frac{p\left(4q-p^2\right)}{9}\)
\(\Leftrightarrow q\le\frac{p^3+36}{4p+9}\)
Nên ta cần chỉ ra rằng \(p^2-\frac{7\left(p^3+6\right)}{4p+9}+12\ge0\Leftrightarrow\left(p-3\right)\left(p^2-6\right)\le0\)*đúng vì \(4\ge p\ge\sqrt{3q}\ge3\)*
*) Nếu \(p\ge4\)thì \(p^2\ge16\ge4q\Rightarrow p^2-2q+5r\ge p^2-2q\ge\frac{p^2}{2}\ge8\)
Vậy bất đẳng thức được chứng minh
Đẳng thức xảy ra khi x = y = z = 1 hoặc \(\left(x,y,z\right)=\left(2,2,0\right)\)và các hoán vị
Tuyệt quá,
Bất đẳng thức \(\frac{a^2}{\left(b+c\right)^2}+\frac{b^2}{\left(c+a\right)^2}+\frac{c^2}{\left(a+b\right)^2}+\frac{kabc}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\ge\frac{3}{4}+\frac{1}{8}k\)
có hằng số k tốt nhất là 10.
Tức là bài toán này đúng với mọi \(k\le10\)!