Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(16^{10}+32=160000000000+32.\)
\(=160000000032\)
Vì 160000000032 chia hết cho 3 nên 1610 + 32 chia hết cho 3.
mình nhé.Mình cảm ơn nhiều,Bài này đúng 100%
995 - 984 + 973 - 962
= 994 . 99 - (...6) + (...3) - (...6)
= (...1) . 99 - (...6) + (...3) - (...6)
= (...9) - (...6) + (...3) - (...6)
= (...3) + (...3) - (...6)
= (...6) - (...6) = (...0) chia hết cho 10
Chứng tỏ 995 - 984 + 973 - 962 chia hết cho 10
995 - 984 + 973 - 962
= 994 . 99 - (...6) + (...3) - (...6)
= (...1) . 99 - (...6) + (...3) - (...6)
= (...9) - (...6) + (...3) - (...6)
= (...3) + (...3) - (...6)
= (...6) - (...6) = (...0) chia hết cho 10
Chứng tỏ 995 - 984 + 973 - 962 chia hết cho 10
mk nha
Ta cần chứng minh số này chia hết cho 7 và 9
Hiển nhiên chia hết cho 7 vì 146\(⋮\)7 và 493\(⋮\)7 (1)
Ta có 146-493=1963-493=(196-49)(1962+196.49+492)=147.50421
Ta có 147 chia hết cho 3
50421 chia hết cho 3
=>146-493 chia hết cho 9 (2)
Từ (1) và (2) =>ĐPCM
7) Bạn xem lại đề. Phải chia hết cho 26 chứ ???
8) Đặt A = 2 + 22 + 23 + ... + 2100
Nhóm 2 số lại:
A= 2(1+2)+23(1+2)+25(1+2)+...+299(1+2)=2.3+23.3+25.3+...+299.3=3(2+23+25+...+299) chia hết cho 3
Tương tự nhóm 4 số sẽ được A chia hết cho 5.
A chia hết cho 3 và 5 nên A chia hết cho 15
a) Ta thấy \(999993^{1999}⋮̸5\) và \(55555^{1997}⋮5\) nên \(999993^{1999}-55555^{1997}⋮̸5\), mâu thuẫn đề bài.
b)
Ta có \(17^{25}=17^{4.6+1}=17.\left(17^4\right)^6=17.\overline{A1}=\overline{B7}\) có chữ số tận cùng là 7. \(13^{21}=13^{4.5+1}=13.\left(13^4\right)^5=13.\overline{C1}=\overline{D3}\) có chữ số tận cùng là 3. \(24^4=4^4.6^4=\overline{E6}.\overline{F6}=\overline{G6}\) có chữ số tận cùng là 6 nên \(17^{25}-13^{21}+24^4\) có chữ số tận cùng là chữ số tận cùng của \(7-3+6=10\) hay là 0. Vậy \(17^{25}-13^{21}+24^4⋮10\)
c) Cách làm tương tự câu b.
Bài làm:
1) Ta có: \(2+2^2+2^3+...+2^{20}\)
\(=2\left(1+2+2^2+...+2^{19}\right)⋮2\)
2) Ta có: \(2+2^2+2^3+...+2^{20}\)
\(=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{19}\left(1+2\right)\)
\(=3\left(2+2^3+...+2^{19}\right)⋮3\)
3) Ta có: \(2+2^2+2^3+...+2^{20}\)
\(=2\left(1+2+2^2+2^3\right)+2^5\left(1+2+2^2+2^3\right)+...+2^{16}\left(1+2+2^2+2^3\right)\)
\(=15\left(2+2^5+...+2^{16}\right)⋮5\)
\(9^7+81^4-27^5\)
\(=\left(3^2\right)^7+\left(3^4\right)^4-\left(3^3\right)^5\)
\(=3^{14}+3^{16}-3^{15}\)
\(=3^{14}\left(1+9-3\right)\)
\(=3^{14}\times7⋮7\)