\(8\cdot2^{n^{ }}+2^{n+1}\) có tận cùng bằng chữ số 0 ( với 
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 8 2019

Ta có :

\(8.2^n+2^{n+1}=2^n.\left(8+2\right)=10.2^n\)   tận cùng là c/s 0

10 tháng 8 2019

bn chắc ko bn

8.2n+2n+1=2n(8+2)=2n.10 có tận cùng là 0

=>đpcm

1 tháng 6 2015

 \(8.2^2+2^{n+1}\)

\(8.2^n+2^2.2\) 

\(2^n.\left(8+2\right)\) 

\(2^n.10\) 

=> \(2^n.10\) chia hết cho 10 ( vì 10 chia hết cho 10)

vậy 2^n . 10 có tận cùng là chữ số 0 

hay \(8.2^n+2^{n+1}\) có tận cùng là chữ số 0

25 tháng 10 2020

Ko cm đc

10 tháng 3 2017

vì \(n\ge2\)nên \(2^n⋮4\)

\(\Rightarrow2^{2^n}\)có dạng là \(2^{4k}\left(k\in N^x\right)\)

Mà \(2^{4k}=16^k\)

Vì 1 số có tận cùng là 6 lũy thừa với số mũ khác 0 đều cho ta một số có tận cùng là 6

\(\Rightarrow2^{2^n}\)có tận cùng là 6 \(\Rightarrow2^{2^n}+1\)có tận cùng là 7 (đpcm)

12 tháng 3 2017

\(2^{2^n}\forall n\in N,n\ge2\) thì \(2^{2^n}\) là số chẵn nên không thể tận cùng là 7, bạn xem lại đề

thiếu +1

15 tháng 4 2017

Vì n lớn hơn hoặc bằng 2

Nên n bằng 2 là bé nhất

Suy ra 22 mũ n = 22 mũ 2 = 24

Mà 24 có tận cùng 6

Nên 24 + 1 tận cùng 7

Với các trường hợp n lớn hơn 2 thì 22 mũ n đều tận cung 6 và 22 mũ n + 1 tận cùng 7 ( đpcm )
 

5 tháng 3 2017

a) Ta có: \(8\times2^n+2^{n+1}\) \(=8\times2^n+2^n\times2\) \(=2^n\times\left(8+2\right)\) \(=2^n\times10\) \(=...0\)

Vậy \(8\times2^n+2^{n+1}\) có tận cùng bằng chữ số 0 (đpcm).

b) Ta có: \(3^{n+3}-2\times3^n+2^{n+5}-7\times2^n\) \(=3^n\times3^3-2\times3^n+2^n\times2^5-7\times2^n\) \(=3^n\times\left(3^3-2\right)+2^n\times\left(2^5-7\right)\) \(=3^n\times\left(27-2\right)+2^n\times\left(32-7\right)\) \(=3^n\times25+2^n\times25\) \(=\left(3^n+2^n\right)\times25\)

\(25⋮25\)

nên \(\left(3^n+2^n\right)\times25⋮25\)

Vậy \(3^{n+3}-2\times3^n+2^{n+5}-7\times2^n\) chia hết cho 25 (đpcm).

1 tháng 3 2017

Ta có : 3n + 2 - 2n + 2 + 3n - 2n 

= (3n + 2 + 3n) - (2n + 2 + 2n)

= 3n(32 + 1) - 2n - 1(23 + 2)

= 3n.10 - 2n - 1.10

= 10.(3n - 2n - 1)

Mà 3n - 2n - 1 thuộc Z

Nên 10.(3n - 2n - 1) chia hết cho 10

Vậy  3n + 2 - 2n + 2 + 3n - 2n chia hết cho 10