Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 5:
b: Ta có: \(n+6⋮n+2\)
\(\Leftrightarrow n+2\in\left\{2;4\right\}\)
hay \(n\in\left\{0;2\right\}\)
c: Ta có: \(3n+1⋮n-2\)
\(\Leftrightarrow n-2\in\left\{-1;1;7\right\}\)
hay \(n\in\left\{1;3;9\right\}\)
Ta có: 3x-4y
= x-6y+6y-+4y
= 3.(x+2y)-10y
Mà: 10 chia hết cho 5 => 10y chia hết cho 5
3 không chia hết cho 5 => 9x+2y0 chia hết cho 5 (1)
Ta có: x+2y
=x+2y+5x-10y-5x+10y
= 6x-8y-5.(x+2y)
Mà: 5 chia hết cho 5 => 5(x+2y) chia hết cho 5
2 không chia hết cho 5 => (3x-4y) chia hết cho 5 (2)
Từ (1) và (2) => x+2y <=> 3x -4y
Vậy ; x+2y <=> 3x-4y
Ta có :
n2 + n + 1 = n . ( n + 1 ) + 1
Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên \(⋮\)2 \(\Rightarrow\)n . ( n + 1 ) + 1 là một số lẻ nên không chia hết cho 4
Vì n . ( n + 1 ) là tích của hai số tự nhiên liên tiếp nên không có tận cùng là 4 hoặc 9. Do đó n . ( n + 1 ) + 1 không có tận cùng là 0
hoặc 5 . Vì vậy, n2 + n + 1 không chia hết cho 5
Giả sử n chia hết cho 5
=> n có dạng 5k
=> n2 + n + 1 = 25k2 + 5k + 1 = 5k( 5k + 1 ) + 1
Ta có : 5k( 5k + 1 ) chia hết cho 5 mà 1 không chia hết cho 5
=> 25k2 + 5k + 1 không chia hết cho 5 ( đpcm )
Ta có n2 + n = n.(n + 1) là tích của hai số tự nhiên liên tiếp nên có tận cùng là 0; 2; 6.
Do đó n2 + n + 1 có tận cùng là 1; 3; 7.
- chữ số tận cùng là số lẻ => không chia hết cho 4.
- chữ số tận cùng khác 0 hoặc 5 => không chia hết cho 5.
Vậy n2 + n + 1 không chia hết cho 4 và không chia hết cho 5
Giả sử như mệnh đề trên đúng :
n^2+1 chia hết cho 4
* Nếu n chẵn : n = 2k , k thuộc N
=> n^2 +1 = 4k^2 +1 k chia hết cho 4
* nếu n lẻ : n = 2k + 1
=> n^2 +1 = 4k^2 +4k +2
=> n^2 +1 = 4k(k+1)+2
k , k +1 là 2 số tự nhiên liên tiếp
=> k(k+1) chia hết cho 2
=> 4k(k+1)chia hết cho 4
=> 4k(k+1)+2 chia cho 4 , dư 2
=> 4k (k+1)+2 k chia hết cho 4
Lời giải:
$n(n+1)\vdots 2$ do là tích của 2 số tự nhiên liên tiếp
$\Rightarrow n^2+n+1=n(n+1)+1$ lẻ
$\Rightarrow n^2+n+1\not\vdots 4(1)$
Mặt khác:
Xét số dư của $n$ khi chia cho $5$
Nếu $n=5k+1$ với $k$ tự nhiên thì:
$n^2+n+1=(5k+1)^2+5k+1+1=25k^2+15k+3=5(5k^2+3k)+3\not\vdots 5$
Nếu $n=5k+2$ với $k$ tự nhiên thì:
$n^2+n+1=(5k+2)^2+5k+2+1=25k^2+25k+7=5(5k^2+5k+1)+2\not\vdots 5$
Nếu $n=5k+3$ với $k$ tự nhiên thì:
$n^2+n+1=(5k+3)^2+5k+3+1=25k^2+35k+13=5(5k^2+7k+2)+3\not\vdots 5$
Nếu $n=5k+4$ với $k$ tự nhiên thì:
$n^2+n+1=(5k+4)^2+5k+4+1=25k^2+45k+21=5(5k^2+9k+4)+1\not\vdots 5$
Vậy $n^2+n+1\not\vdots 5$
Vậy.......
giả sử n chia hết cho 5
=>n có dạng 5k
=>n^2+n+1=25k^2+5k+1=5k(5k+1)+1
ta có 5k(5k+1) chia hết cho 5 mà 1 ko chia hết cho 5
=>25k^2+5k+1 ko chia hết cho 5 (đpcm)
Lời giải:
Có: $5\equiv 1\pmod 4$
$\Rightarrow 5^n\equiv 1^n\equiv 1\pmod 4$
$\Rightarrow 5^n-1\equiv 1-1\equiv 0\pmod 4$
$\Rightarrow 5^n-1\vdots 4$