K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 11 2021

\(=\left(4a-3-3a+4\right)\left(4a-3+3a-4\right)\)

\(=\left(a+1\right)\cdot7\cdot\left(a-1\right)⋮7\)

Bài 1: 

b) Ta có: \(\left(2n-3\right)\left(2n+3\right)-4n\left(n-9\right)\)

\(=4n^2-9-4n^2+36n\)

\(=36n-9⋮9\)

1 tháng 10 2016

Đề sai rồi bạn

Nếu ta thử n=0 thôi ta sẽ có:

 \(\left(7n-2\right)^2-\left(2n-7\right)^2=\left(-2\right)^2-\left(-7\right)^2=4-49=-45\) không chia hết cho 7 :(

30 tháng 10 2021

em chịu

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!

27 tháng 12 2015

câu 1 bạn phân tích ra là a(a+1)(a+2)(a+3) là 4 số tự nhiên liên tiếp nên chia hết cho 24.

câu 2 bạn phân tích ra thành (a-2)(a-1)a(a+1)(a+2) là 5 số tự nhiên liên tiếp nên chia hết cho 120

bài 3 phân tích ra thành:(a-2)(a-1)a(3a-5) nhưng mình k biết nó chia hết cho 24 ở chỗ nào

 

 

16 tháng 8 2017

VT = x^2 + 5x - ( x^2 - x -6)

= x^2 + 5x - x^2 + x +6

= 6x +6 = 6.(x+1) chia hết cho 6 với mọi n là số nguyên

16 tháng 9 2017
Ta có n(n+5)-(n-3)(n+2)=n²+5n-(n²-3n+2n-6) =n²+5n-n²+3n-2n+6 =6n+6 Tổng trên có hai hạng tử mà mỗi hạng tử đều chia hết cho 6 nên tổng chia hết cho 6 Vậy n(n+5)-(n-3)(n+2) luôn luôn chia hết cho 6 với mọi n là số nguyên
30 tháng 10 2021

\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)

\(=\left(n-1\right)\left(n+1\right)\left(n-1+1\right)\)

\(=\left(n-1\right)\cdot n\cdot\left(n+1\right)⋮6\)

2 tháng 11 2016

A= n2(n+1)+2n(n+1)=(n+1)(n2+2n)=(n+1)n(n+2)

vì A có n(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho2 

A có n(n+1)(n+2) là tích của 3 số tự nhiên liên tiếp nên chia hết cho3

lại có (2;3)=1 nênA chia hết cho 2*3=6

7 tháng 1 2021

\(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)\)

\(=\left(n^2-1\right)\left(n-1\right)+\left(n^2-1\right)\)

\(=\left(n^2-1\right)\left(n-1+1\right)\)

\(=n\cdot\left(n-1\right)\left(n+1\right)\)

Vì n; n-1; n+1 là 3 số nguyên liên tiếp

=> \(n\left(n-1\right)\left(n+1\right)⋮3\)         (1)

Vì n; n-1 là 2 số nguyên liên tiếp

\(\Rightarrow n\left(n-1\right)⋮2\)

\(\Rightarrow n\left(n-1\right)\left(n+1\right)⋮2\)        (2)

Từ (1) và (2)

=>\(n\left(n-1\right)\left(n+1\right)⋮6\)

Hay \(\left(n-1\right)^2\cdot\left(n+1\right)+\left(n^2-1\right)⋮6\) 

Vậy....