K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

1 tháng 10 2016

Đề sai rồi bạn

Nếu ta thử n=0 thôi ta sẽ có:

 \(\left(7n-2\right)^2-\left(2n-7\right)^2=\left(-2\right)^2-\left(-7\right)^2=4-49=-45\) không chia hết cho 7 :(

30 tháng 10 2021

em chịu

22 tháng 7 2016

(7n - 2)2 - (2n - 7)2

= (7n - 2 + 2n - 7).(7n - 2 - 2n + 7)

= (9n - 9).(9n + 5)

= 9.(n - 1).(9n + 5) chia hết cho 9 ( đpcm)

22 tháng 7 2016

Ta có: (7n-2)2 -(2n-7)= (7n-2 + 2n-7) .(7n-2 - 2n-7)

                                = (9n-9) . ((5n+(-9))

Ta có n là số nguyên, nếu ta thế 1 số nguyên nào vào hằng đẳng thức trên thì chắc chắn kết quả sẽ chia hết cho 9

 Vd : ( 9.7-9).((5.7+(-9))= 54.26= 1404 chia hết cho 9 => (7n-2)2 -(2n-7)2 luôn chia hết cho 9 với mọi giá trị của n là giá trị nguyên .

11 tháng 11 2021

a: \(=\left(4n-7-5\right)\left(4n-7+5\right)\)

\(=\left(4n-12\right)\left(4n-2\right)\)

\(=8\left(n-3\right)\left(2n-1\right)⋮8\)

\(\Leftrightarrow\left(3n+7-2n-3\right)\left(3n+7+2n+3\right)\)

\(=\left(5n+10\right)\left(n+4\right)⋮5\)

BN thử vào câu hỏi tương tự xem có k?

Nếu có thì bn xem nhé!

Nếu k thì xin lỗi đã làm phiền bn

Hội con 🐄 chúc bạn học tốt!!!

2 tháng 11 2016

A= n2(n+1)+2n(n+1)=(n+1)(n2+2n)=(n+1)n(n+2)

vì A có n(n+1) là tích của 2 số tự nhiên liên tiếp nên chia hết cho2 

A có n(n+1)(n+2) là tích của 3 số tự nhiên liên tiếp nên chia hết cho3

lại có (2;3)=1 nênA chia hết cho 2*3=6

3 tháng 12 2017

Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2) 
= n^2 (n^4 – 1 + n^2 – 1) 
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1] 
= n^2 (n^2 – 1)(n^2 + 2) 
= n.n.(n – 1)(n + 1)(n^2 + 2) 
+ Nếu n chẳn ta có n = 2k (k thuộc N) 
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1) 
Suy ra A chia hết cho 8 
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N) 
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2) 
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3) 
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp 
Suy ra A chia hết cho 8 
Do đó A chia hết cho 8 với mọi n thuộc N 
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72. 
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1). 
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72. 
Vậy A chia hết cho 72 với mọi n thuộc N.

28 tháng 10 2018

Chép hả Lý

7 tháng 2 2018

Rút gọn được n 3 – n. Biến đổi thành Q = n(n – 1)(n + 1). Ba số nguyên liên tiếp trong đó sẽ có 1 số chia hết cho 2 và 1 số chia hết cho 3, vì Q ⋮ 6.