Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(B=4^1+4^2+...+4^{300}\)
\(=4\left(1+4\right)+4^3\left(1+4\right)+...+4^{299}\left(1+4\right)\)
\(=4.5+4^3.5+...+4^{299}.5=5\left(4+4^3+...+4^{299}\right)⋮5\)
\(B=4+4^2+4^3+...+4^{300}\)
\(B=\left(4+4^2\right)+\left(4^3+4^4\right)+...+\left(4^{299}+4^{300}\right)\)
\(B=5.4+5.4^3+...+5.4^{299}\)
\(B=5\left(4+4^3+4^5+...+4^{299}\right)\)
\(\Rightarrow B⋮5\)
Vì 13 là lẻ \(\Rightarrow\) 13, 132, 133, 134, 135, 136 là lẻ.
Mà lẻ + lẻ + lẻ + lẻ + lẻ + lẻ = chẵn nên 13 + 132 + 133 + 134 + 135 + 136 là chẵn. \(\Rightarrow\) 13 + 132 + 133 + 134 + 135 + 136 \(⋮\) 2
\(\Rightarrow\) ĐPCM
1. \(A=2^{2016}-1\)
\(2\equiv-1\left(mod3\right)\\ \Rightarrow2^{2016}\equiv1\left(mod3\right)\\ \Rightarrow2^{2016}-1\equiv0\left(mod3\right)\\ \Rightarrow A⋮3\)
\(2^{2016}=\left(2^4\right)^{504}=16^{504}\)
16 chia 5 dư 1 nên 16^504 chia 5 dư 1
=> 16^504-1 chia hết cho 5
hay A chia hết cho 5
\(2^{2016}-1=\left(2^3\right)^{672}-1=8^{672}-1⋮7\)
lý luận TT trg hợp A chia hết cho 5
(3;5;7)=1 = > A chia hết cho 105
2;3;4 TT ạ !!
a) P = 5 + 5² + 5³ + ... + 5²⁰
= 5(1 + 5 + 5² + ... + 5¹⁹) ⋮ 5
Vậy P ⋮ 5
b) P = 5 + 5² + 5³ + ... + 5²⁰
= 5.(1 + 5) + 5³.(1 + 5) + ... + 5¹⁹.(1 + 5)
= 6.(5 + 5³ + ... + 5¹⁹) ⋮ 6
Vậy P ⋮ 6
c) P = 5 + 5² + 5³ + 5⁴ + ... + 5¹⁷ + 5¹⁸ + 5¹⁹ + 5²⁰
= 5.(1 + 5 + 5² + 5³) + ... + 5¹⁷.(1 + 5 + 5² + 5³)
= 5.156 + ... + 5¹⁷.156
= 156.(5 + 5⁵ + 5⁹ + 5¹³ + 5¹⁷)
= 13.12.(5 + 5⁵ + 5⁹ + 5¹³ + 5¹⁷) ⋮ 13
Vậy P ⋮ 13
a: P=5(1+5+5^2+...+5^19) chia hết cho 5
b: P=5(1+5)+5^3(1+5)+...+5^19(1+5)
=6(5+5^3+...+5^19) chia hết cho 6
c: P=5(1+5+5^2+5^3)+...+5^17(1+5+5^2+5^3)
=156(5+5^5+5^9+5^13+5^17) chia hết cho 13