Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a)√x−1=2(x≥1)
\(x-1=4
\)
x=5
b)
\(\sqrt{3-x}=4\) (x≤3)
\(\left(\sqrt{3-x}\right)^2=4^2\)
x-3=16
x=19
a: Ta có: \(\sqrt{x-1}=2\)
\(\Leftrightarrow x-1=4\)
hay x=5
b: Ta có: \(\sqrt{3-x}=4\)
\(\Leftrightarrow3-x=16\)
hay x=-13
c: Ta có: \(2\cdot\sqrt{3-2x}=\dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{3-2x}=\dfrac{1}{4}\)
\(\Leftrightarrow-2x+3=\dfrac{1}{16}\)
\(\Leftrightarrow-2x=-\dfrac{47}{16}\)
hay \(x=\dfrac{47}{32}\)
d: Ta có: \(4-\sqrt{x-1}=\dfrac{1}{2}\)
\(\Leftrightarrow\sqrt{x-1}=\dfrac{7}{2}\)
\(\Leftrightarrow x-1=\dfrac{49}{4}\)
hay \(x=\dfrac{53}{4}\)
e: Ta có: \(\sqrt{x-1}-3=1\)
\(\Leftrightarrow\sqrt{x-1}=4\)
\(\Leftrightarrow x-1=16\)
hay x=17
f:Ta có: \(\dfrac{1}{2}-2\cdot\sqrt{x+2}=\dfrac{1}{4}\)
\(\Leftrightarrow2\cdot\sqrt{x+2}=\dfrac{1}{4}\)
\(\Leftrightarrow\sqrt{x+2}=\dfrac{1}{8}\)
\(\Leftrightarrow x+2=\dfrac{1}{64}\)
hay \(x=-\dfrac{127}{64}\)
Ta có: \(\dfrac{1}{9}=\left(\dfrac{1}{3}\right)^2=\dfrac{1}{3.3}< \dfrac{1}{2.3}\)
\(\dfrac{1}{16}=\left(\dfrac{1}{4}\right)^2=\dfrac{1}{4.4}< \dfrac{1}{3.4}\)
................
\(\dfrac{1}{\left(2n+1\right)^2}< \dfrac{1}{2n\left(2n+1\right)}\)
⇒\(\dfrac{1}{9}+\dfrac{1}{16}+......+\dfrac{1}{\left(2n+1\right)^2}\)< \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+.....+\dfrac{1}{2n.\left(2n+1\right)}\)
= \(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+.....+\dfrac{1}{2n}-\dfrac{1}{2n+1}\)
= \(\dfrac{1}{2}-\dfrac{1}{2n+1}\)
= \(\dfrac{2n+1-2}{2n+1}\)
= \(\dfrac{2n-1}{2n+1}\)= \(1-\dfrac{2}{2n+1}\)
Ta có: n ≥ 1⇒ 2n+1 ≥ 3
⇒ \(1-\dfrac{2}{2n+1}\) ≤ \(\dfrac{1}{3}\)
hình như đề sai thì phải
Ta có: \(\frac{x-2}{\sqrt{x-1}+1}\)
\(=\frac{x-1-1}{\sqrt{x-1}+1}\)
\(=\frac{\left(\sqrt{x-1}-1\right)\left(\sqrt{x-1}+1\right)}{\sqrt{x-1}+1}\)
\(=\sqrt{x-1}-1\)
Ta có: \(\sqrt{x-1}\ge0\forall x\) thỏa mãn ĐKXĐ
\(\Leftrightarrow\sqrt{x-1}-1\ge-1\forall x\) thoả mãn ĐKXĐ
\(\Leftrightarrow\frac{x-2}{\sqrt{x-1}+1}\ge-1\forall x\ge1\)(đpcm)
ặt x+1=tx+1=t thì t>0t>0 và x=-1+tx=−1+t. Ta có
2x+\dfrac{1}{\left(x+1\right)^2}=2\left(-1+t\right)+\dfrac{1}{t^2}=-2+t+t+\dfrac{1}{t^2}2x+(x+1)21=2(−1+t)+t21=−2+t+t+t21
\ge-2+3\sqrt[3]{t.t.\dfrac{1}{t^2}}=-2+3=1≥−2+33t.t.t21=−2+3=1
1