K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2022

Gọi ƯCLN( \(2m+1;m+1\) ) = \(d\) 

Ta có :

\(\begin{cases} 2m + 1 \vdots d\\m + 1 \vdots d\end{cases} \) 

=> \(\begin{cases} 2m + 1 \vdots d\\2(m + 1) \vdots d \end{cases} \)

=> \(2( m + 1 ) - ( 2m + 1 ) \vdots d\)

=> \(2m +2 - 2m-1\vdots d\)

=> \(1\vdots d \) 

<=> \(d \in \) { \(\pm\) 1 }

=> \(\dfrac{ 2m + 1 }{ m + 1 }\) tối giản \(\forall m \in \mathbb{Z} ; m \ne 1\) 

 

3 tháng 5 2022

thank bn

Đặt d = ( 4m + 8 , 2m + 3 )

\(\Rightarrow4m+8⋮d\)

\(2m+3⋮d\)\(\Rightarrow2\left(2m+3\right)⋮d\)\(\Rightarrow4m+6⋮d\)

\(\Rightarrow\left(4m+8-4m-6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\inƯC\left(2\right)\)

\(\Rightarrow d\in\left(1;2\right)\)

Do 2m + 3 là số lẻ nên d là số lẻ

\(\Rightarrow d=1\)

Vậy \(\left(4m+8;2m+3\right)=1\)

Hay \(\frac{4m+8}{2m+3}\)là phân số tối giản

12 tháng 3 2017

Đặt d = ( 4m + 8 , 2m + 3 )

\(\Rightarrow4m+8⋮d\)

\(2m+3⋮d\)\(\Rightarrow2\left(2m+3\right)⋮d\)\(\Rightarrow4m+6⋮d\)

\(\Rightarrow\left(4m+8-4m-6\right)⋮d\)

\(\Rightarrow2⋮d\)

\(\Rightarrow d\inƯC\left(2\right)\)

\(\Rightarrow d\in\left(1;2\right)\)

Do 2m + 3 là số lẻ nên d là số lẻ

\(\Rightarrow d=1\)

Vậy \(\left(4m+8;2m+3\right)=1\)

Hay \(\frac{4m+8}{2m+3}\)là phân số tối giản

28 tháng 2 2021

Giả sử `A=(n+1)/(n+2)` là số nguyên

`=>n+1 vdots n+2`

`=>n+2-1 vdots n+2`

`=>1 vdots n+2`

`=>n+2 in Ư(1)={1,-1}`

`=>n in {-1,-3}`

Mời bạn kiểm tra lại ạ phải thêm `n in N` hoặc `n ne {-1,-3}`

`=>` giả sử sai

`=>` A là phân số tối giản với `n in N`

a: Để A là số nguyên thì \(2m+3⋮m+1\)

\(\Leftrightarrow2m+2+1⋮m+1\)

\(\Leftrightarrow m+1\in\left\{1;-1\right\}\)

hay \(m\in\left\{0;-2\right\}\)

b: Gọi a=UCLN(2m+3;m+1)

\(\Leftrightarrow2m+3-2m-2⋮a\)

\(\Leftrightarrow1⋮a\)

=>UCLN(2m+3;m+1)=1

=>A là phân số tối giản

20 tháng 2 2017

CM 1 câu còn câu kia làm tương tự nhé!

ĐẶt UC(2m+3,m+1)=d

=> \(\hept{\begin{cases}2m+3⋮d\\m+1⋮d\end{cases}\Leftrightarrow}\)\(2m+3-2\left(m+1\right)⋮d\Leftrightarrow1⋮d\Leftrightarrow d=1\)

Vậy phân số tối giản

P/S: PP chung cho dạng này là đặt UC của tử và mẫu là d rồi bù trừ thích hợp để CM d=1

Nếu giả sử khi bù trừ ta ra được 1 số khác 1, ví dụ như câu b, sau khi tử - 2 lần mẫu sẽ ra \(2⋮d\)=> d=1 hoặc d=2 nhưng mẫu là 2m+3 là số lẻ không chia hết cho 2 nên d=1