K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 10 2019

Chứng minh rằng

\(2^{54}.54^{24}.2^{10}⋮72^{63}\)

22 tháng 10 2019

TL :

Tham khảo tại : https://olm.vn/hoi-dap/detail/13261464360.html

Hok tốt

\(24^{54}\cdot54^{24}\cdot2^{10}\)

\(=2^{162}\cdot3^{54}\cdot3^{72}\cdot2^{24}\cdot2^{10}\)

\(=2^{196}\cdot3^{126}\)

 

c: \(81^7-27^9-9^{13}\)

\(=3^{28}-3^{27}-3^{26}\)

\(=3^{26}\left(3^2-3-1\right)\)

\(=3^{24}\cdot45⋮45\)

12 tháng 9 2017

\(24^{54}.54^{24}.2^{10}\)

\(=\left(2^3.3\right)^{54}.\left(3^3.2\right)^{24}.2^{10}\)

\(=\left(2^3\right)^{54}.3^{54}.\left(3^3\right)^{24}.2^{24}.2^{10}\)

\(=2^{162}.3^{54}.3^{72}.2^{24}.2^{10}\)

\(=2^{196}.3^{126}\)

Lại có :

\(72^{63}=\left(2^3.3^2\right)^{63}\)

\(=\left(2^3\right)^{63}.\left(3^2\right)^{63}\)

\(=2^{189}.3^{126}\)

\(2^{196}.3^{126}⋮2^{189}.3^{126}\Leftrightarrowđpcm\)

28 tháng 8 2016

khi tách VT và VP ra TSNT ta có:

2454.5424.210=2196.3126

7263=2189..3126

nhận xét: 2196 chia hết cho 2189     3126chia hết cho 3126

suy ra ĐPCM

1 tháng 8 2016

b) dễ lắm cậu tự làm nha , tách ra thành 2 vế rồi rút gọn lại

c) \(3^{n+2}-2^{n+2}+3^n-2^n\)

\(=3^n.9-2^n.4+3^n.1-2^n.1\)

\(=3^n.\left(9+1\right)-2^n.\left(4+1\right)\)

\(=3^n.10-2^n.5\)

\(=3^n.10-2^{n-1}.2.5\)

\(=3^n.10-2^{n-1}.10\)

\(=10.\left(3^n.2^{n-1}\right)\)

tham khảo câu b bài 1 ở link này https://olm.vn/hoi-dap/detail/88152567739.html