Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đặt \(A=2^1+2^2+...+2^{108}\)
\(\Rightarrow2A=2^2+2^3+...+2^{109}\)
\(\Rightarrow A=2^{109}-2\)
Ta có \(A=2^{109}-2^{106}+2^{106}-2^{103}+2^{103}-2^{100}+...+2^4-2\)
\(=2^{106}\left(2^3-1\right)+2^{103}\left(2^3-1\right)+...+2\left(2^3-1\right)\)
\(=7\left(2^{106}+2^{103}+...+2\right)⋮7\)
Vậy A chia hết cho 7.
Ta có : 21+22+23+24+.....+2108=
=( 21+22+23 )+( 24+25+26 )+.....+( 2106+ 2107+2108 )
=21 ( 1+2+4 )+24 ( 1+2+4 )+.....+2106( 1+2+4 )
=21 .7+24 .7+....+2106. 7
=7 ( 21+24+......+2106 ) \(⋮\)7
Vậy 21+23+24+....+2108\(⋮\)7
\(⋮\)
\(3+3^2+3^3+...+3^{2012}\)
\(=\left(3+3^2+3^3+3^4\right)+...+\left(3^{2009}+3^{2010}+3^{2011}+3^{2012}\right)\)
\(=3\left(1+3+3^2+3^3\right)+...+3^{2009}\left(1+3+3^2+3^3\right)\)
\(=40\left(3+...+3^{2009}\right)⋮40\)
2^1+2^2+2^3+2^4+.....................+2^108
=(2^1+2^2+2^3)+(2^4+2^5+2^6)+........+(2^106+2^107+2^108)
=2(1+2+2^2)+2^4(1+2+2^2)+..........+2^106(1+2+2^2)
=(2+2^4+.......+2^106)(1+2+2^2)
=7(2+2^4+.....+2^106)chia hết cho 7 (đcpm)
mình mất 10 phút để trả lời câu hỏi này đấy