K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 9 2014

Số số hạng của dãy số là:

(11-0):1+1=12( số )

= 1 + 3 + 3^2 + ... + 3^11

=( 1 + 3 + 3^2 ) + ....+ ( 3^9+ 3^10 + 3 ^11 )

=( 1 + 3 + 3^2 ) + ....+ 3^9( 1 + 3 + 3^2 ) 

= 13+......+ 3^9.13

=13(1+...+3^9)

Vì 13 chia hết cho13=>13(1+..+3^9) chia hết cho 13

Vậy ...

 

23 tháng 9 2014

SSH : (177148 + 1)+2 +1 = 177151

Tổng : (177148 - 1 )+177151 : 2 = 2657225

CÔNG THỨC : SSH : Lấy số cuối cộng số đầu trong ngoặc rồi cộng khoảng cách giữa 2 số đầu , ví dụ : giữa 1 và 3 là hơn kém nhau 2 đơn vị tiếp theo cộng 1 .

                       Tổng : Lấy số cuối trừ số đầu trong ngoặc nhân cho kết quả của SSH rồi chia 2 .

 

18 tháng 11 2015

a) Vì mỗi số đều chia hết cho 3 => A chia hết cho 3

b) A= (3+32+33)+(34+35+36)+.....+(313+314+315)

A= 1.(3+32+33)+3.(3+32+33)+.......+ 312.(3+32+33)

A= 1.39+3.39+....+312.39

=> Vì 39 chia hết cho cho 3

=> ĐPCM

18 tháng 11 2015

a) bạn hỏi tính chất à

 

b) A= (3+32+33)+(34+35+36)+.....+(313+314+315)

 

A= 1.(3+32+33)+3.(3+32+33)+.......+ 312.(3+32+33)

 

A= 1.39+3.39+....+312.39

 

=> Vì 39 chia hết cho cho 3

 

=> ĐPCM

Vì 3 lũy thừa liên tiếp từ lũy thừa đầu tiên cộng lại chia hết cho 3

Mà 60 chia hết cho 3 nên tổng này chia hết cho 3

23 tháng 10 2018

Đặt A = 31 + 32 + 33 +...+ 360 ( có 60 số hạng)

A = (31 + 3+ 33) + (34 + 35 + 36) + ...+ (358 + 359 + 360) ( có 20 nhóm số hạng)

A = 3.(1+3+32) + 34.(1+3+32) + ...+ 358.(1+3+32)

A = 3.13 + 34.13 + ...+ 358.13

A = 13.(3+34+...+358) chia hết cho 13

7 tháng 9 2017

B = 1 + 3 + 32 +......+ 311

   = (1+3)+(32+33)+.....+(310+311)

   = 1.(1+3)+32(1+3)+.....+310(1+3)

   = (1+3)(1+32+.....+310)

   = 4(1+32+......+310) chia hết cho 4

Vậy B chia hết cho 4

câu b của bạn thiếu số 3 ở giữa số 1 và 32 nghen

18 tháng 10 2019

a/ nhóm lần lượt 2 số hạng liên tiếp thành 1 nhóm => c/m được chia hết cho 4

b/ Nhóm lần lượt 3 số hạng liên tiếp thành 1 nhóm => c/m được chia hết cho 13

29 tháng 7 2016

\(E=1+3+3^2+3^3+....+3^{11}\)

\(E=\left(1+3+3^2\right)+\left(3^3+3^4+3^5\right)+...+\left(3^9+3^{10}+3^{11}\right)\)

\(E=\left(1+3+9\right)+\left(3^3.1+3^3.3+3^3.3^2\right)+....+\left(3^9.1+3^9.3+3^9.3^2\right)\)

\(E=13+3^3.13+...+3^9.13\)

\(E=13.\left(1+3^3+...+3^9\right)\)

1 tháng 11 2017

trả lời giúp mk với

20 tháng 11 2017

a bằng 14

b bằng 26

c bằng 15