K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 6 2018

Ta có : \(11^{10}⋮1\left(mod100\right)\)

\(\Rightarrow\left(11^{10}\right)^{10}⋮1\left(mod100\right)\)

\(\Rightarrow11^{100}⋮1\left(mod100\right)\)

\(1⋮1\left(mod100\right)\)

\(\Rightarrow11^{100}-1⋮0\left(mod100\right)\)

Hay \(11^{100}-1⋮100\)( dpcm )

19 tháng 3 2017

1110-1=(1+10)10-1=(1+c11010+c210102+...+c910109+1010)-1

=102+c210102+...+c910109+1010

tổng sau cùng chia hết cho 100 => 1110-1chia hết cho 100

CHÚC BẠN HỌC GIỎI

TK MÌNH NHÉ

24 tháng 7 2021

a) 101n+1-101n=101n.101-101n=101n(101-1)=100.101n chia hết cho 100

c) n2(n-1)-2n(n-1)=(n2-2n)(n-1)=n(n-1)(n-2)

vì n, (n-1), (n-2) là 3 số tự nhiên liên tiếp nên có 1 số chia hết cho 2, 1 số chia hết cho 3

Mà(2, 3) = 1 

⇒n(n-1)(n-2) chia hết cho 2.3 = 6

24 tháng 7 2021

phần b mik ko giải đc 

24 tháng 3 2020

1110-1=(11-1)(119+118+...+11)=10(119+118+...+11)⋮10

Vì 1110-1⋮10=>11x-1⋮10<=>(119+118+...+11)⋮10

=>10(119+118+...+11)⋮100

=>1110-1⋮100

18 tháng 10 2015

Ta có: B = (1 + 100) + (2 + 99) + ...+ (50 + 51) = 101. 50

Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101

Ta có: A = (13 + 1003) + (23 + 993) + ... +(503 + 513) 

= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2. 99 + 992) + ... + (50 + 51)(502 + 50. 51 + 512) =

101(12 + 100 + 1002 + 22 + 2. 99 + 992 + ... + 502 + 50. 51 + 512) chia hết cho 101 (1)

Lại có: A = (13 + 993) + (23 + 983) + ... + (503 + 1003)

Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2) 

Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chi hết cho B

Ta có: B = (1 + 100) + (2 + 99) + ...+ (50 + 51) = 101. 50

Để chứng minh A chia hết cho B ta chứng minh A chia hết cho 50 và 101

Ta có: A = (13 + 1003) + (23 + 993) + ... +(503 + 513) 

= (1 + 100)(12 + 100 + 1002) + (2 + 99)(22 + 2. 99 + 992) + ... + (50 + 51)(502 + 50. 51 + 512) =

101(12 + 100 + 1002 + 22 + 2. 99 + 992 + ... + 502 + 50. 51 + 512) chia hết cho 101 (1)

Lại có: A = (13 + 993) + (23 + 983) + ... + (503 + 1003)

Mỗi số hạng trong ngoặc đều chia hết cho 50 nên A chia hết cho 50 (2) 

Từ (1) và (2) suy ra A chia hết cho 101 và 50 nên A chi hết cho B