K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 10 2018

1)  \(B=1+5+5^2+5^3+....+5^{101}\)

\(=\left(1+5\right)+\left(5^2+5^3\right)+.....+\left(5^{100}+5^{101}\right)\)

\(=\left(1+5\right)+5^2\left(1+5\right)+....+5^{100}\left(1+5\right)\)

\(=\left(1+5\right)\left(1+5^2+....+5^{100}\right)\)

\(=6\left(1+5^2+...+5^{100}\right)\)\(⋮6\)

14 tháng 10 2018

2)  \(C=81^3+3^{14}+27^5\)

\(=\left(3^4\right)^3+3^{14}+\left(3^3\right)^5\)

\(=3^{12}+3^{14}+3^{15}\)

\(=3^{12}.\left(1+3^2+3^3\right)\)

\(=3^{12}.37\)\(⋮37\)

1 tháng 10 2023

a) \(C=5+5^2+5^3+...+5^8\)

\(C=\left(5+5^2\right)+\left(5^3+5^4\right)+\left(5^5+5^6\right)+\left(5^7+5^8\right)\)

\(C=\left(5+25\right)+5^2\cdot\left(5+25\right)+5^4\cdot\left(5+25\right)+5^6\cdot\left(5+25\right)\)

\(C=30+5^2\cdot30+5^4\cdot30+5^6\cdot30\)

\(C=30\cdot\left(1+5^2+5^4+5^6\right)\)

Vậy C chia hết cho 30

b) \(D=2+2^2+2^3+...+2^{60}\)

\(D=2\left(1+2\right)+2^2\left(1+2\right)+...+2^{59}\cdot\left(1+2\right)\)

\(D=2\cdot3+2^2\cdot3+...+2^{59}\cdot3\)

\(D=3\cdot\left(2+2^2+...+2^{59}\right)\)

Vậy D chia hết cho 3

\(D=2+2^2+2^3+...+2^{60}\)

\(D=2\cdot\left(1+2+4\right)+2^4\cdot\left(1+2+4\right)+...+2^{58}\cdot\left(1+2+4\right)\)

\(D=2\cdot7+2^4\cdot7+...+2^{58}\cdot7\)

\(D=7\cdot\left(2+2^4+...+2^{58}\right)\)

Vậy D chia hết cho 7

\(D=2+2^2+2^3+...+2^{60}\)

\(D=\left(2+2^2+2^3+2^4\right)+....+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)\)

\(D=2\cdot\left(1+2+4+8\right)+...+2^{57}\cdot\left(1+2+4+8\right)\)

\(D=2\cdot15+2^5\cdot15+...+2^{57}\cdot15\)

\(D=15\cdot\left(2+2^5+...+2^{57}\right)\)

Vậy D chia hết cho 15 

1 tháng 10 2023

a) C = 5 + 5² + 5³ + ... + 5⁸

= (5 + 5²) + 5².(5 + 5²) + 5⁴.(5 + 5²) + 5⁶.(5 + 5²)

= 30 + 5².30 + 5⁴.30 + 5⁶.30

= 30.(1 + 5² + 5⁴ + 5⁶) ⋮ 30

Vậy C ⋮ 30

b) *) Chứng minh D ⋮ 3

D = 2 + 2² + 2³ + ... + 2⁶⁰

= 2.(1 + 2) + 2³.(1 + 2) + ... + 2⁵⁹.(1 + 2)

= 2.3 + 2³.3 + ... + 2⁵⁹.3

= 3.(2 + 2³ + ... + 2⁵⁹) ⋮ 3

Vậy D ⋮ 3   (1)

*) Chứng minh D ⋮ 7

D = 2 + 2² + 2³ + ... + 2⁶⁰

= 2.(1 + 2 + 2²) + 2⁴.(1 + 2 + 2²) + ... 2⁵⁸.(1 + 2 + 2²)

= 2.7 + 2⁴.7 + ... + 2⁵⁸.7

= 7.(2 + 2⁴ + ... + 2⁵⁸) ⋮ 7

Vậy D ⋮ 7   (2)

*) Chứng minh D ⋮ 15

D = 2 + 2² + 2³ + ... + 2⁶⁰

= 2.(1 + 2 + 2² + 2³) + 2⁵.(1 + 2 + 2² + 2³) + 2⁵⁷.(1 + 2 + 2² + 2³)

= 2.15 + 2⁵.15 + ... + 2⁵⁷.15

= 15.(2 + 2⁵ + ... + 2⁵⁷) ⋮ 15

Vậy D ⋮ 15   (3)

Từ (1), (2), (3) suy ra D chia hết cho lần lượt 3; 7 và 15

21 tháng 10 2023

Bài 3:

\(A=5+5^2+..+5^{12}\)

\(5A=5\cdot\left(5+5^2+..5^{12}\right)\)

\(5A=5^2+5^3+...+5^{13}\)

\(5A-A=\left(5^2+5^3+...+5^{13}\right)-\left(5+5^2+...+5^{12}\right)\)

\(4A=5^2+5^3+...+5^{13}-5-5^2-...-5^{12}\)

\(4A=5^{13}-5\)

\(A=\dfrac{5^{13}-5}{4}\)

22 tháng 12 2015

Minh lam cau A) thoi duoc hong

1 tháng 11 2015

c)D=4+42+43+44+...+42012

D=(4+42)+(43+44)+...+(42011+42012)

D=4.5+43.5+45.5+...+42011.5

D=5.(4+43+42011)

=>D chia hết cho 5

=>ĐPCM

1 tháng 11 2015

tất cả đều có trong câu hỏi tương tự

28 tháng 10 2023

a) Ta có:

\( A = 5+5^2+5^3+\ldots+5^{100} \)

Để chứng minh A chia hết cho 5, ta xét tổng S = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 5).

Ta thấy rằng \( 5 \) chia hết cho 5, \( 5^2 \) chia hết cho 5, \( 5^3 \) chia hết cho 5, và tiếp tục như vậy cho tới \( 5^{100} \).

Vì vậy, ta có: \( S \equiv 0+0+0+\ldots+0 \equiv 0 \) (mod 5).

Do đó, A chia hết cho 5.

Để chứng minh A không chia hết cho 25, ta xét tổng T = \( 5+5^2+5^3+\ldots+5^{100} \) (mod 25).

Ta thấy rằng \( 5 \) không chia hết cho 25, \( 5^2 \) không chia hết cho 25, \( 5^3 \) không chia hết cho 25, và tiếp tục như vậy cho tới \( 5^{100} \).

Vì vậy, ta có: \( T \equiv 5+0+0+\ldots+0 \equiv 5 \) (mod 25).

Do đó, A không chia hết cho 25.

b) Ta có:

\( B = 5+5^2+5^3+\ldots+5^{20} \)

Để chứng minh B chia hết cho 6, ta xét tổng U = \( 5+5^2+5^3+\ldots+5^{20} \) (mod 6).

Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{20} \).

Vì vậy, ta có: \( U \equiv 5+1+1+\ldots+1 \equiv 5 \) (mod 6).

Do đó, B chia hết cho 6.

c) Ta có:

\( C = 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \)

Để chứng minh C không chia hết cho 6, ta xét tổng V = \( 5+5^2+5^3+\ldots+5^{2022}+5^{2023} \) (mod 6).

Ta thấy rằng \( 5 \) chia hết cho 6, \( 5^2 \) không chia hết cho 6, \( 5^3 \) không chia hết cho 6, \( 5^4 \) chia hết cho 6, và tiếp tục như vậy cho tới \( 5^{2022} \) và \( 5^{2023} \).

Vì vậy, ta có: \( V \equiv 5+1+1+\ldots+1 \equiv 2 \) (mod 6).

Do đó, C không chia hết cho 6.

d) Ta có:

\( D = 1+2+2^2+2^3+\ldots+2^{2021} \)

Để chứng minh D chia hết cho 7, ta xét tổng W = \( 1+2+2^2+2^3+\ldots+2^{2021} \) (mod 7).

Ta thấy rằng \( 2 \) không chia hết cho 7, \( 2^2 \) chia hết cho 7, \( 2^3 \) không chia hết cho 7, \( 2^4 \) không chia hết cho 7, \( 2^5 \) không chia hết cho 7, \( 2^6 \) chia hết cho 7, và tiếp tục

mong mn cho minh vai xu :)))))))))))))))))))))))))))))))))

28 tháng 10 2023

bạn Tiến Dũng Trương lm sai r

2 tháng 1 2019

bai mac re ma khong lam dc tao chiu bay can tao giang khong