K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

26 tháng 10 2020

\(\left(\frac{1}{x+2\sqrt{x}}-\frac{1}{\sqrt{x}+2}\right)\div\frac{1-\sqrt{x}}{x+4\sqrt{x}+4}\)

ĐKXĐ : \(\hept{\begin{cases}x>0\\x\ne1\end{cases}}\)

\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}+2\right)}-\frac{1}{\sqrt{x}+2}\right)\div\frac{1-\sqrt{x}}{\left(\sqrt{x}+2\right)^2}\)

\(=\left(\frac{1}{\sqrt{x}\left(\sqrt{x}+2\right)}-\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\right)\div\frac{1-\sqrt{x}}{\left(\sqrt{x}+2\right)^2}\)

\(=\frac{1-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}+2\right)}\times\frac{\left(\sqrt{x}+2\right)^2}{1-\sqrt{x}}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}}\)

=> đpcm

28 tháng 9 2019

Áp dụng BDT cô-si \(\frac{\sqrt{x}}{\sqrt{y}}+\frac{\sqrt{y}}{\sqrt{x}}\ge2\sqrt{\frac{\sqrt{x}\sqrt{y}}{\sqrt{y}\sqrt{x}}}\)=2

Dấu = xảy ra khi x=y

22 tháng 11 2019

cho mình hỏi để viết phân số và dấu căn thì làm sao ạ 

12 tháng 8 2021

a, \(A=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}-2}\right):\frac{-\sqrt{x}}{x-2\sqrt{x}}\)

\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(A=\frac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}}\)

\(A=\frac{4}{\sqrt{x}+2}\)

b, \(A=\frac{4}{\sqrt{x}+2}=\frac{2}{3}\)

=> 2cawn x + 4 = 12

=> 2.căn x = 8

=> căn x = 4

=> x = 16 (thỏa mãn)

c, có A = 4/ căn x + 2 và B  = 1/căn x - 2

=> A.B = 4/x - 4 

mà AB nguyên

=> 4 ⋮ x - 4

=> x - 4 thuộc Ư(4) 

=> x - 4 thuộc {-1;1;-2;2;-4;4}

=> x thuộc {3;5;2;6;0;8} mà x > 0 và x khác 4

=> x thuộc {3;5;2;6;8}

d, giống c thôi

4 tháng 8 2019

\(a,Q=\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}};x>0;x\ne1;x\ne4\)

\(=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\left(\frac{x-\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{x+\sqrt{x}-2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{x-\sqrt{x}+2\sqrt{x}-2-x-\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\frac{1}{\sqrt{x}}\)

\(=\frac{2}{x-1}\)

4 tháng 8 2019

\(a,\)\(Q=\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right).\)\(\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right).\)\(\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)^2}.\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2}{x-1}\)\(\left(đpcm\right)\)

\(b,Q=\frac{2}{x-1}\)

\(Q\in Z\Leftrightarrow\frac{2}{x-1}\in Z\Rightarrow x-1\inƯ_2\)

Mà \(Ư_2=\left\{\pm1;\pm2\right\}\)

TH1 : \(x-1=-1\Rightarrow x=0\)

TH2 : \(x-1=1\Rightarrow x=2\)

TH3 : \(x-1=-2\Rightarrow x=-1\)

TH4 :\(x-1=2\Rightarrow x=3\)

\(\Rightarrow\)x nguyên lớn nhất là 3 để Q là số nguyên

27 tháng 7 2018

a, \(A=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}+\frac{1}{1-\sqrt{x}}\) (ĐKXĐ: \(x\ne1,x\ge0\))

\(=\frac{x+2}{x\sqrt{x}-1}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)

\(=\frac{x+2}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}+\frac{\sqrt{x}+1}{x+\sqrt{x}+1}-\frac{1}{\sqrt{x}-1}\)

\(=\frac{x+2+x-1-x-\sqrt{x}-1}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{x-\sqrt{x}}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}\)

\(=\frac{\sqrt{x}\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(x+\sqrt{x}+1\right)}=\frac{\sqrt{x}}{x+\sqrt{x}+1}\)

b, \(A-\frac{1}{3}\Leftrightarrow\frac{\sqrt{x}}{x+\sqrt{x}+1}-\frac{1}{3}\)\(=\frac{3\sqrt{x}-x-\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}=\frac{-x+2\sqrt{x}-1}{3\left(x+\sqrt{x}+1\right)}=-\frac{-\left(x-2\sqrt{x}+1\right)}{3\left(x+\sqrt{x}+1\right)}=-\frac{\left(\sqrt{x}+1\right)^2}{3\left(x+\sqrt{x}+1\right)}< 0\)

\(\Rightarrow A-\frac{1}{3}< 0\Leftrightarrow A< \frac{1}{3}\)

c, ĐKXĐ: \(x\ge0,x\ne1\)

Ta có: x = \(19-8\sqrt{3}\)(TMĐK) \(\Leftrightarrow\sqrt{x}=\sqrt{19-8\sqrt{3}}\Leftrightarrow\sqrt{x}=\sqrt{\left(4-\sqrt{3}\right)^2}\Leftrightarrow\sqrt{x}=4-\sqrt{3}\)

Thay \(\sqrt{x}=4-\sqrt{3}\)vào A ta có:

\(A=\frac{4-\sqrt{3}}{\left(4-\sqrt{3}\right)^2+4-\sqrt{3}+1}=\frac{4-\sqrt{3}}{19-8\sqrt{3}+4-\sqrt{3}+1}=\frac{4-\sqrt{3}}{24-9\sqrt{3}}\)

Vậy với \(x=19-8\sqrt{3}\)thì \(A=\frac{4-\sqrt{3}}{24-9\sqrt{3}}\)