K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 8 2019

\(a,Q=\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}};x>0;x\ne1;x\ne4\)

\(=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\left(\frac{x-\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}-\frac{x+\sqrt{x}-2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)^2}\right)\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{x-\sqrt{x}+2\sqrt{x}-2-x-\sqrt{x}+2\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2\left(\sqrt{x}-1\right)}\cdot\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{2\sqrt{x}}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\cdot\frac{1}{\sqrt{x}}\)

\(=\frac{2}{x-1}\)

4 tháng 8 2019

\(a,\)\(Q=\left(\frac{\sqrt{x}+2}{x+2\sqrt{x}+1}-\frac{\sqrt{x}-2}{x-1}\right).\)\(\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\left(\frac{\sqrt{x}+2}{\left(\sqrt{x}+1\right)^2}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right).\)\(\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{\left(\sqrt{x}+2\right)}{\left(\sqrt{x}+1\right)^2}.\frac{\sqrt{x}+1}{\sqrt{x}}-\frac{\sqrt{x}-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}.\frac{\sqrt{x}+1}{\sqrt{x}}\)

\(=\frac{\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}+1\right)}-\frac{\sqrt{x}-2}{\sqrt{x}\left(\sqrt{x}-1\right)}\)

\(=\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-1\right)-\left(\sqrt{x}-2\right)\left(\sqrt{x}+1\right)}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{x+\sqrt{x}-2-x+\sqrt{x}+2}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\)

\(=\frac{2\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{2}{x-1}\)\(\left(đpcm\right)\)

\(b,Q=\frac{2}{x-1}\)

\(Q\in Z\Leftrightarrow\frac{2}{x-1}\in Z\Rightarrow x-1\inƯ_2\)

Mà \(Ư_2=\left\{\pm1;\pm2\right\}\)

TH1 : \(x-1=-1\Rightarrow x=0\)

TH2 : \(x-1=1\Rightarrow x=2\)

TH3 : \(x-1=-2\Rightarrow x=-1\)

TH4 :\(x-1=2\Rightarrow x=3\)

\(\Rightarrow\)x nguyên lớn nhất là 3 để Q là số nguyên

12 tháng 8 2021

a, \(A=\left(\frac{1}{\sqrt{x}+2}-\frac{1}{\sqrt{x}-2}\right):\frac{-\sqrt{x}}{x-2\sqrt{x}}\)

\(A=\left(\frac{\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}-\frac{\sqrt{x}+2}{\left(\sqrt{x}-2\right)\left(\sqrt{x}+2\right)}\right):\frac{-\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-2\right)}\)

\(A=\frac{\sqrt{x}-2-\sqrt{x}-2}{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)}\cdot\frac{-\sqrt{x}\left(\sqrt{x}-2\right)}{\sqrt{x}}\)

\(A=\frac{4}{\sqrt{x}+2}\)

b, \(A=\frac{4}{\sqrt{x}+2}=\frac{2}{3}\)

=> 2cawn x + 4 = 12

=> 2.căn x = 8

=> căn x = 4

=> x = 16 (thỏa mãn)

c, có A = 4/ căn x + 2 và B  = 1/căn x - 2

=> A.B = 4/x - 4 

mà AB nguyên

=> 4 ⋮ x - 4

=> x - 4 thuộc Ư(4) 

=> x - 4 thuộc {-1;1;-2;2;-4;4}

=> x thuộc {3;5;2;6;0;8} mà x > 0 và x khác 4

=> x thuộc {3;5;2;6;8}

d, giống c thôi

4 tháng 8 2019
https://i.imgur.com/PxGK5Kx.png
1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)a) Rút gọn biểu thức Ab) Tính giá trị của A khi x=9c) Tìm x để A=5d) Tìm x để A<1e) Tìm giá trị nguyên của x để A nhận giá trị nguyên2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)a) Tính giá trị biểu thức P khi x...
Đọc tiếp

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

1. Cho biểu thức A = \(\left(\frac{x-\sqrt{x}}{\sqrt{x}-1}+1\right):\left(\frac{x+2\sqrt{x}}{\sqrt{x}+2}-1\right)\)

a) Rút gọn biểu thức A

b) Tính giá trị của A khi x=9

c) Tìm x để A=5

d) Tìm x để A<1

e) Tìm giá trị nguyên của x để A nhận giá trị nguyên

2. Cho hai biểu thức P = \(\frac{\sqrt{x}+1}{\sqrt{x}-1}\) và A = \(\left(\frac{x-2}{x+2\sqrt{x}}+\frac{1}{\sqrt{x}+2}\right).\frac{\sqrt{x}+1}{\sqrt{x}-1}\)

a) Tính giá trị biểu thức P khi x = \(\frac{1}{4}\)

b) Rút gọn biểu thức A

c) So sánh giá trị biểu thức A với 1

d) Tìm giá trị của x để \(\frac{P}{A}\left(x-1\right)=0\)

 

 

0
21 tháng 10 2020

Giúp mình với mình đang cần gấp. Thk you các pạn

4 tháng 8 2019

\(A=\left(\frac{1}{\sqrt{x}}-\frac{1}{\sqrt{x}-1}\right)\)\(:\left(\frac{\sqrt{x}+2}{\sqrt{x}-1}-\frac{\sqrt{x}+1}{\sqrt{x}-2}\right)\)

\(=\left(\frac{\sqrt{x}-1}{\sqrt{x}\left(\sqrt{x}-1\right)}-\frac{\sqrt{x}}{\sqrt{x}\left(\sqrt{x}-1\right)}\right)\)\(:\left(\frac{\left(\sqrt{x}+2\right)\left(\sqrt{x}-2\right)-\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\right)\)

\(=\frac{\left(\sqrt{x}-1-\sqrt{x}\right)}{\sqrt{x}\left(\sqrt{x}-1\right)}:\frac{\left(\sqrt{x}-4-\sqrt{x}+1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}\)

\(=\frac{-1}{\sqrt{x}\left(\sqrt{x}-1\right)}.\frac{\left(\sqrt{x}-1\right)\left(\sqrt{x}-2\right)}{-3}\)\(=\frac{\sqrt{x}-2}{3\sqrt{x}}\)

\(b,A=0\Leftrightarrow\frac{\sqrt{x}-2}{3\sqrt{x}}=0\Leftrightarrow\sqrt{x}-2=0\)

Mà \(\sqrt{x}+2\ne0\)\(\Rightarrow\)không có giá trị nào  của x thỏa mãn \(A=0\)

14 tháng 7 2016

a/ \(P=\left[\frac{1}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}-1\right)}{\sqrt{x}\left(x-1\right)+x-1}\right]:\left[\frac{1}{\sqrt{x}-1}-\frac{2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)

   \(=\left[\frac{1}{\sqrt{x}+1}-\frac{2\left(\sqrt{x}-1\right)}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}\right]:\left[\frac{\sqrt{x}+1-2}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)

    \(=\left[\frac{1}{\sqrt{x}+1}-\frac{2}{\left(\sqrt{x}+1\right)^2}\right]:\left[\frac{\sqrt{x}-1}{\left(\sqrt{x}+1\right)\left(\sqrt{x}-1\right)}\right]\)

      \(=\frac{\sqrt{x}+1-2}{\left(\sqrt{x}+1\right)^2}.\left(\sqrt{x}+1\right)=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

b/ Ta có: \(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}=1-\frac{2}{\sqrt{x}+1}\)

    Để \(P\in Z\) thì \(\left(\sqrt{x}+1\right)\inƯ\left(2\right)=\left\{1;-1;2;-2\right\}\)

    + Với \(\sqrt{x}+1=1\Rightarrow\sqrt{x}=0\Rightarrow x=0\)

    + Với \(\sqrt{x}+1=-1\Rightarrow\sqrt{x}=-2\left(vn\right)\)

    + Với \(\sqrt{x}+1=2\Rightarrow\sqrt{x}=1\Rightarrow x=1\)(loại)

    + Với \(\sqrt{x}+1=-2\Rightarrow\sqrt{x}=-3\left(vn\right)\)

                                         Vậy x = 0 thì P nguyên

14 tháng 7 2016

a) \(P=\left(\frac{1}{\sqrt{x}+1}-\frac{2\sqrt{x}-2}{x\sqrt{x}-\sqrt{x}+x-1}\right):\left(\frac{1}{\sqrt{x}-1}-\frac{2}{x-1}\right)\)

\(=\frac{x-1-2\sqrt{x}+2}{\left(\sqrt{x}+1\right)\left(x-1\right)}:\frac{\sqrt{x}+1-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)}=\frac{\left(\sqrt{x}-1\right)^2}{\left(x-1\right)\left(\sqrt{x}+1\right)}.\frac{x-1}{\sqrt{x}-1}=\frac{\sqrt{x}-1}{\sqrt{x}+1}\)

b) \(P=\frac{\sqrt{x}-1}{\sqrt{x}+1}=\frac{\sqrt{x}+1-2}{\sqrt{x}+1}=1-\frac{2}{\sqrt{x}+1}\)

Để P nguyên thì \(\sqrt{x}+1\in\left\{1;2\right\}\Leftrightarrow x\in\left\{0\right\}\) (Vì x khác 1 - điều kiện)

c) \(\sqrt{x}+1\ge1\Leftrightarrow\frac{2}{\sqrt{x}+1}\le\frac{1}{2}\Leftrightarrow1-\frac{2}{\sqrt{x}+1}\ge\frac{1}{2}\)

\(\Rightarrow P\ge\frac{1}{2}\). Dấu đẳng thức xảy ra khi x = 0

Vậy Min P = 1/2 <=> x = 0

12 tháng 8 2020

a) x = 16 (tm) => A = \(\frac{\sqrt{16}-2}{\sqrt{16}+1}=\frac{4-2}{4+1}=\frac{2}{5}\)

b) B = \(\left(\frac{1}{\sqrt{x}+5}-\frac{x+2\sqrt{x}-5}{25-x}\right):\frac{\sqrt{x}+2}{\sqrt{x}-5}\)

B = \(\frac{\sqrt{x}-5+x+2\sqrt{x}-5}{\left(\sqrt{x}-5\right)\left(\sqrt{x}+5\right)}\cdot\frac{\sqrt{x}-5}{\sqrt{x}+2}\)

B = \(\frac{x+3\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

B = \(\frac{x+5\sqrt{x}-2\sqrt{x}-10}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}\)

B = \(\frac{\left(\sqrt{x}+5\right)\left(\sqrt{x}-2\right)}{\left(\sqrt{x}+5\right)\left(\sqrt{x}+2\right)}=\frac{\sqrt{x}-2}{\sqrt{x}+2}\)

c) P = \(\frac{B}{A}=\frac{\sqrt{x}-2}{\sqrt{x}+2}:\frac{\sqrt{x}-2}{\sqrt{x}+1}=\frac{\sqrt{x}+1}{\sqrt{x}+2}\)

=> \(P\left(\sqrt{x}+2\right)\ge x+6\sqrt{x}-13\)

<=> \(\frac{\sqrt{x}+1}{\sqrt{x}+2}.\left(\sqrt{x}+2\right)-x-6\sqrt{x}+13\ge0\)

<=> \(-x-6\sqrt{x}+13+\sqrt{x}+1\ge0\)

<=> \(-x-5\sqrt{x}+14\ge0\)

<=> \(x+5\sqrt{x}-14\le0\)

<=> \(x+7\sqrt{x}-2\sqrt{x}-14\le0\)

<=> \(\left(\sqrt{x}+7\right)\left(\sqrt{x}-2\right)\le0\)

Do \(\sqrt{x}+7>0\) với mọi x => \(\sqrt{x}-2\le0\)

<=> \(\sqrt{x}\le2\) <=> \(x\le4\)

Kết hợp với Đk: x \(\ge\)0; x \(\ne\)4; x \(\ne\)25

và x thuộc Z => x = {0; 1; 2; 3}

d) M = \(3P\cdot\frac{\sqrt{x}+2}{x+\sqrt{x}+4}\) <=>M = \(3\cdot\frac{\sqrt{x}+1}{\sqrt{x}+2}\cdot\frac{\sqrt{x}+2}{x+\sqrt{x}+4}\)

M = \(\frac{3\sqrt{x}+3}{x+\sqrt{x}+4}=\frac{x+\sqrt{x}+4-x+2\sqrt{x}-1}{\left(x+\sqrt{x}+\frac{1}{4}\right)+\frac{15}{4}}=1-\frac{\left(\sqrt{x}-1\right)^2}{\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{15}{4}}\le1\)(Do \(\left(\sqrt{x}-1\right)^2\ge0\) và \(\left(\sqrt{x}+\frac{1}{2}\right)^2+\frac{15}{4}>0\))

Dấu "=" xảy ra <=> \(\sqrt{x}-1=0\) <=> \(x=1\)

Vậy MaxM = 1 khi x = 1

4 tháng 8 2019
https://i.imgur.com/BCUaQYE.png