K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 7 2017

\(\frac{4n+3}{5n+4}\)

Ta có d là ƯCLN(4n+3;5n+4)

=>4n+3:d

    5n+4:d

=>20n+15:d

    20n+16:d

=>1:d

=>\(\frac{4n+3}{5n+4}\)là phân số tối giản

(chú ý sau dấu => có hoăc móc nhé)

27 tháng 3 2017

Gọi ƯCLN  của 4n+3 và 5n+4 là d ( d là thuộc N )

=> 4n+3 chia hết cho d và 5n+4 chia hết cho d

=>5.(4n+3) chia hết cho d và 4.(5n+4) chia hết cho d

=> 20n+15 chia hết cho d và 20n+16 chia hết cho d

=> (20n+16)-(20n+15) chia hết cho d

=>20n+16-20n-15 chia hết cho d

=> (20n-20n)+(16-15) chia hết cho d

=> 1 chia hết cho d

=> d=1

Vậy 4n+3/5n+4 là phân số tối giản với mọi n thuôc tập hợp N*

Ai chưa từng có người yêu thì kết bạn và tk cho mik nha !!! >.<

27 tháng 3 2017

Mọi người tk mình đi mình đang bị âm nè!!!!!!

Ai tk mình mình tk lại nha !!!

19 tháng 4 2023

Gọi \(\text{Ư}c\left(5n+4;4n+3\right)=d\)

\(=>\left\{{}\begin{matrix}5n+4⋮d\\4n+3⋮d\end{matrix}\right.=>\left\{{}\begin{matrix}20n+16⋮d\\20n+15⋮d\end{matrix}\right.\)

\(=>\left(20n+16\right)-\left(20n+15\right)⋮d\)

\(=>1⋮d\)

\(=>d\in\left\{-1;1\right\}\)

\(=>M\) là phân số tối giản

Gọi d=ƯCLN(5n+4;4n+3)

=>20n+16-20n-15 chia hết cho d

=>1 chia hết cho d

=>d=1

=>PSTG

3 tháng 4 2019

Gọi ƯCLN(4n+3;5n+4)=d (d\(\in\)Z; d\(\ne\)0)

\(\Rightarrow\) \(\left(4n+3\right)⋮d\) \(và\) \(\left(5n+4\right)⋮d\)

\(\Rightarrow5\left(4n+3\right)⋮d\) \(và\) \(4\left(5n+4\right)⋮d\)

\(\Rightarrow\left(20n+15\right)⋮d\) \(và\) \(\left(20n+16\right)⋮d\)

\(\Rightarrow\left(20n+16\right)-\left(20n+15\right)\)\(⋮d\)

\(\Rightarrow1⋮d\) \(\Rightarrow d\inƯ\left(1\right)\)

mà Ư(1)={1;-1}

\(\Rightarrow\) \(d\in\left\{1;-1\right\}\)

\(Khi\) \(đó\) \(phân\) \(số\) \(\frac{4n+3}{5n+4}\) \(là\) \(phân\) \(số\) \(tối\) \(giản\)

Vậy ...........

21 tháng 2 2017

Vì 4n+3​​ phần 5n+4 là phân số tối giản

Gọi ưcln(4n+3;5n+4) là d

19 tháng 7 2016

Gọi d = ƯCLN(4n+3; 5n+4) (d thuộc N*)

=> 4n + 3 chia hết cho d; 5n + 4 chia hết cho d

=> 5.(4n + 3) chia hết cho d; 4.(5n + 4) chia hết cho d

=> 20n + 15 chia hết cho d; 20n + 16 chia hết cho d

=> (20n + 16) - (20n + 15) chia hết cho d

=> 20n + 16 - 20n - 15 chia hết cho d

=> 1 chia hết cho d

Mà d thuộc N* => d = 1

=> ƯCLN(4n+3; 5n+4) = 1

=> đpcm

19 tháng 7 2016

                Gọi (4n + 3,5n + 4) = d \(\left(d\in N\right)\)

             \(\Rightarrow\hept{\begin{cases}4n+3:d\\5n+4:d\end{cases}}\Rightarrow\hept{\begin{cases}5.\left(4n+3\right):d\\4.\left(5n+4\right):d\end{cases}}\Rightarrow\hept{\begin{cases}20n+15:d\\20n+16:d\end{cases}}\)

             => 20n + 16 - (20 + 15) chia hết cho d

             hay 1 chia hết cho d => d \(\in\)Ư(1)

            Mà Ư(1) = {-1;1} => d \(\in\){-1;1}

           Vì d là lơn nhất nên d = 1

           => (4n + 3,5n + 4) = 1 hay 4n + 3 và 5n + 4 là 2 số nguyên tố cùng nhau

          Vậy 4n + 3/5n + 4 là p/số tối giản (ĐPCM)

           Ủng hộ mk nha !!! ^_^

6 tháng 4 2017

gọi d là ƯCLN(5n+1;6n+1)

=>5n+1 chia hết cho d =>6(5n+1)chia hết cho d=>30n+6 chia hết cho d

=>6n+1 chia hết cho d =>5(6n+1)chia hết cho d=>30n+5 chia hết cho d

=>(30n+6)-(30n+5)chia hết cho d

=> 1 chia hết cho d

=> d= 1

=>5n+1 và 6n+1 là hai snt cùng nhau

Vậy phân số 5n+1/6n+1 là phân số tối giản

Giải:

Gọi ƯCLN(4n+3;5n+4)=d

\(\Rightarrow\left\{{}\begin{matrix}4n+3⋮d\\5n+4⋮d\end{matrix}\right.\)        \(\Rightarrow\left\{{}\begin{matrix}5.\left(4n+3\right)⋮d\\4.\left(5n+4\right)⋮d\end{matrix}\right.\)       \(\Rightarrow\left\{{}\begin{matrix}20n+15⋮d\\20n+16⋮d\end{matrix}\right.\)

⇒(20n+16)-(20n+15) ⋮ d

⇒     1 ⋮ d

⇒d=1

Vậy \(\dfrac{4n+3}{5n+4}\) là phân số tổi giản.

Chúc bạn học tốt!