Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Gọi ước chung lớn nhất của 2n + 1 và 4n + 3 là d
Ta có: \(\left\{{}\begin{matrix}2n+1⋮d\\4n+3⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}2\left(2n+1\right)⋮d\\4n+3⋮d\end{matrix}\right.\)
⇒ \(\left\{{}\begin{matrix}4n+2⋮d\\4n+3⋮d\end{matrix}\right.\)
Trừ vế cho vế ta có: 4n + 3 - ( 4n + 2) ⋮ d
⇒ 4n + 3 - 4n - 2 ⋮ d
⇒ 1 ⋮ d ⇒ d = 1
Vậy ước chung lớn nhất của 2n + 1 và 4n + 3 là 1 hay phân số:
\(\dfrac{2n+1}{4n+3}\) là phân số tối giản ( đpcm)
Gọi d là ước chung nguyên tố của 2n + 3 và 4n + 1
⇒⎧⎩⎨2n+3⋮d4n+1⋮d
+) Vì : 2n+3⋮d;2∈N
⇒2(2n+3)⋮d⇒4n+6⋮d
Mà : 4n+1⋮d
⇒(4n+6)−(4n+1)⋮d
⇒4n+6−4n−1⋮d⇒5⋮d
⇒ d là ước của 5 ; d nguyên tố
⇒d=5
Với d=5⇒4n+1⋮5
⇒5n−n+1⋮5⇒5n−(n−1)⋮5
Vì : n∈N⇒5n⋮5
⇒n−1⋮5⇒n−1=5k⇒n=5k+1
Thử lại : n = 5k + 1 ( k∈N)
2n+3=2(5k+1)+3=10k+5=5(2k+1)⋮5
4n+1=4(5k+1)+1=20k+5=5(4k+1)⋮5
⇒ Với n = 5k + 1 thì phân số trên rút gọn được
⇒n≠5k+1 thì phân số trên tối giản
Vậy n≠5k+1
a. Muốn phân số n+1/2n+3 tối giản thì n+1 và 2n+3 có ƯCLN=1
Giả sử n+1 và 2n+3 có ước là a
=>n+1 chia hết cho a và 2n+3 chia hết cho
=>2(n+1) chia hết cho a và 2n+3 chia hết cho a
=>2n+2 chia hết cho a và 2n+3 chia hết cho a
=>(2n+3)-(2n+2) chia hết cho a
=> 1 chia hết cho a hay a thuộc Ư(1) = {1}
Vậy phân số n+1/2n+3 tối giản
Bây giờ mk bận, tối về giải tiếp nhé
Gọi UWCLN(2n+1;4n2+1) = d : (n thuộc N)
Suy ra : 2n + 1 chia hết cho d , do đó 2n(2n+1)chia hết cho d
hay 4n2 + 2n chia hết cho d
Áp dụng tính chất chia hết của 1 hiệu
4n2 + 2n - (2n + 1) chia hết cho d
Theo bài ra 4n2 + 1 chia hết cho d . Áp dụng tính chất chia hết của 1 hiệu , ta được
4n2 - 1 - (4n2 -1) chia hết cho d
4n2 - 4n2 + 1 chia hết cho d
2 chia hết cho d
Suy ra : d = {1;2}
Vì 2n + 1 và 4n2 + 1 là các số lẻ nên d=1
Vậy 2n+1 là các số tối giản với mọi số tự nhiên n
Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*)
\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)
Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)
\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)
Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\left(đpcm\right)\)
b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n+3 là số lẻ nên
\(\Rightarrow d=1\left(đpcm\right)\)
c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)
\(\Rightarrow d=1\left(đpcm\right)\)
Gọi ƯCLN(2n+3.4n+8) là d (d E N)
Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d
4n+8 chia hết cho d
=> 4n+8-(4n+6) chia hết cho d
=> 4n+8-4n-6 chia hết cho d
=> 2 chia hết cho d
=> d E {1;2}
Vì 2n+3 là số lẻ, 4n+8 là số chẵn => d = 1
=> ƯCLN(2n+3,4n+8)=1
Vậy phân số \(\frac{2n+3}{4n+8}\) là phân số tối giảm (đpcm)
Gọi ƯCLN(2n+3.4n+8) là d (d E N)
Ta có: 2n+3 chia hết cho d => 2(2n+3) chia hết cho d => 4n+6 chia hết cho d
4n+8 chia hết cho d
=> 4n+8-(4n+6) chia hết cho d
=> 4n+8-4n-6 chia hết cho d
=> 2 chia hết cho d
=> d E {1;2}
Vì 2n+3 là số lẻ, 4n+8 là số chẵn => d = 1
=> ƯCLN(2n+3,4n+8)=1
Vậy phân số \(\frac{2n+3}{4n+8}\) là phân số tối giảm (đpcm)
:D
`Answer:`
Đặt \(d=ƯCLN\left(2n+3;4n+7\right)\)
\(\Rightarrow\hept{\begin{cases}2n+3⋮d\\4n+7⋮d\end{cases}\Rightarrow\hept{\begin{cases}2\left(2n+3\right)⋮d\\4n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}4n+6⋮d\\4n+7⋮d\end{cases}}}\)
\(\Rightarrow\left(4n+7\right)-\left(4n+6\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=\pm1\)
Vậy `\frac{2n+3}{4n+7}` tối giản ` ∀n`