K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 6 2019

Ta có \(\left(a^{1005}-b^{1005}\right)^2+\left(b^{1005}-c^{1005}\right)^2+\left(c^{1005}-a^{1005}\right)^2>0\Leftrightarrow a^{2010}-2a^{1005}b^{1005}+b^{2010}+b^{2010}-2b^{1005}c^{1005}+c^{2010}+c^{2010}-2a^{1005}c^{1005}+a^{1005}>0\Leftrightarrow2\left(a^{2010}+b^{2010}+c^{2010}\right)-2\left(a^{1005}b^{1005}+a^{1005}c^{1005}+c^{1005}b^{1005}\right)>0\Leftrightarrow a^{2010}+b^{2010}+c^{2010}>a^{1005}b^{1005}+a^{1005}c^{1005}+c^{1005}b^{1005}\)(đpcm)

9 tháng 5 2016

goij d là UCLN của 5n+1 và 6n+1

ta có 5n+1 chia hết cho d=> 6(5n+1) chia hết cho d=> 30n+6 chia hết cho d(1)

ta có 6n+1 chia hết cho d=> 5(6n+1) chia hết cho d=> 30n+5 chia hết cho d(2)

lấy (1)-(2)

ta có (30n+6)-(30n+5)chia hết cho d

vậy 1 chia hết cho d

nên d=(1;-1)

vậy phân số đã cho tối giản

21 tháng 11 2017

Đáp án D

Dựa vào các bước chứng minh ta thấy lập luận đó là chính xác tất cả các bước.

2 tháng 3 2020

thử xem nha

\(\frac{a^2+a-1}{a^2+a+1}=1-\frac{2}{a^2+a+1}\)

với a là số nguyên để biểu thức trên tối giản thì

\(\frac{2}{a^2+a+1}\) tối giản mà \(a^2+a+1=\left(a+1\right)a+1\) luôn luôn là số lẻ

suy ra đpcm

2 tháng 3 2020

cảm ơnhihi

18 tháng 7 2019

Gọi d là ƯCLN của 21n+4 và 18n+3 (d €N*)

Suy ra 21n+4 chia hết cho d và 18n+3 chia hết cho d

Nên 126n+24 cũng chia hết cho d và 126n+21 cũng chia hết cho d

Suy ra (126n+24)-(126n+21) chia hết cho d

Tương đương 3 chia hết cho d

Suy ra d là 1 hoặc 3

Nếu d là 3 suy ra 21n +4 chia hết cho 3

Mà 21n chia hết cho3

Nên 4 chia hết cho 3 là vô lý

Vậy d là1 suy ra phân sô trên tối giản với mọi neN

18 tháng 7 2019

Tui là minh huy đây

22 tháng 11 2017

Cần chứng minh :\(\dfrac{21n+4}{14n+3}\) tối giản

Giả sử : \(\left\{{}\begin{matrix}21n+4⋮d\\14n+3⋮d\end{matrix}\right.\)

\(\Leftrightarrow\left\{{}\begin{matrix}42n+8⋮d\\42+9⋮d\end{matrix}\right.\)

\(\Leftrightarrow1⋮d\Rightarrow d=1\)

Vậy phân số trên đã tối giản .

22 tháng 11 2017

cảm ơn rất rất nhiều!!!!!vui

24 tháng 2 2017

a/ \(9^{2n+1}+1=\left(9+1\right)\left(9^{2n}-9^{2n-1}+...\right)=10\left(9^{2n}-9^{2n-1}+...\right)\)

Chia hết cho 10

b/ \(3^{4n+1}+2=3^{4n+1}-3+5=3\left(3^{4n}-1\right)+5\)

\(=3\left(81^n-1\right)+5=3.80\left(81^{n-1}+...\right)+5\)

Cái này chia hết cho 5