Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a; (n + 10)(n + 15)
+ Nếu n là số chẵn ta có: n + 10 ⋮ 2 ⇒ (n + 10)(n + 15) ⋮ 2
+ Nếu n là số lẻ ta có: n + 15 là số chẵn
⇒ (n + 15) ⋮ 2 ⇒ (n + 10)(n + 15) ⋮ 2
Từ những lập luận trên ta có:
A = (n + 10)(n + 15) ⋮ 2 ∀ n \(\in\) N
a/
+ Nếu n chẵn (n+10) chẵn => n+10 chia hết cho 2 => (n+10)(n+15) chia hết cho 2
+ Nếu n lẻ thì (n+15) chẵn => n+15 chia hết cho 2 => (n+10)(n+15) chia hết cho 2
b/
n(n+1)(2n+1) chi hết cho 6 khi đồng thời chia hết cho 2 và cho 3
+ Nếu n chẵn => n(n+1)(2n+1) chia hết cho 2
+ Nếu n lẻ => n+1 chẵn => n+1 chia hết cho 2 => n(n+1)(2n+1) chia hết cho 2
=> n(n+1)(2n+1) chia hết cho 2 với mọi n
+ Nếu n chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3
+ Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3
+ Nếu n chia 3 dư 1 => n+2 chia hết cho 3 => 2(n+2)=2n+4=2n+1+3 chia hết cho 3 mà 3 chia hết cho 3 => 2n+1 chia hết cho 3 => n(n+1)(2n+1) chia hết cho 3
=> n(n+1)(2n+1) chia hết cho 3 với mọi n
=> n(n+1)(2n+1) chia hết cho 6 vơi mọi n
c/
n(2n+1)(7n+1) chia hết cho 6 khi đồng thời chia hết cho 2 và cho 3
+ Nếu n chẵn => n chia hết cho 2 => n(2n+1)(7n+1) chia hết cho 2
+ Nếu n lẻ => 7n lẻ => 7n+1 chẵn => 7n+1 chia hết cho 2 => n(2n+1)(7n+1) chia hết cho 2
=> n(2n+1)(7n+1) chia hết cho 2 với mọi n
+ Nếu n chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3
+ Nếu n chia 3 dư 2 => n+1 chia hết cho 3 => 10(n+1)=10n+10=(7n+1)+(3n+9)=(7n+1)+3(n+3) chia hết cho 3
Mà 3(n+3) chia hết cho 3 => 7n+1 chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3
+ Nếu n chia 3 dư 1 chứng minh tương tự câu (b) => 2n+1 chia hết cho 3 => n(2n+1)(7n+1) chia hết cho 3
=> n(2n+1)(7n+1) chia hết cho 3 với mọi n
=> n(2n1)(7n+1) chia hết cho 6 với mọi n
1. Đề sai với $n=1$.
2.
Nếu $n$ chẵn thì hiển nhiên $n(n+5)\vdots 2$
Nếu $n$ lẻ thì $n+5$ chẵn $\Rightarrow n(n+5)\vdots 2$
Vậy $n(n+5)\vdots 2$ với mọi $n\in\mathbb{N}$
3.
Vì $n+7, n+8$ là 2 số tự nhiên liên tiếp nên trong 2 số này sẽ có 1 số chẵn và 1 số lẻ.
$\Rightarrow (n+7)(n+8)\vdots 2$
$\Rightarrow (n+3)(n+7)(n+8)\vdots 2(1)$
Lại có:
Nếu $n\vdots 3\Rightarrow n+3\vdots 3\Rightarrow (n+3)(n+7)(n+8)\vdots 3$
Nếu $n$ chia 3 dư 1 thì $n+8\vdots 3\Rightarrow (n+3)(n+7)(n+8)\vdots 3$
Nếu $n$ chia 3 dư 2 thì $n+7\vdots 3\Rightarrow (n+3)(n+7)(n+8)\vdots 3$
Vậy $(n+3)(n+7)(n+8)\vdots 3(2)$
Từ $(1); (2)$ mà $(2,3)=1$ nên $(n+3)(n+7)(n+8)\vdots 6$
vì 1 trong 2 thừa số n và 7n+1 là số chẵn]
=>n.(2n+1)(7n+1) \(⋮\)2
với n có dạng 3k thì n\(⋮\)3
với n có dạng 3k1 thì2n+1\(⋮\)3
với n cá dạng 3k+2 thì 7n+1\(⋮\)3
vậy n\(⋮\)3 với mọi n
vì số chia hết cho 2; 3 thì chia hết cho 6. ta có:
th1: n=2k => n chia hết cho 2 nên n(n+1) (2n+1) chia hết cho 2
th2: n=2k+1 => n+1= 2k+1+1= 2k+2chia hết cho 2 nên n(n+1) (2n+1) chia hết cho 2
Vậy với mọi trường hợp n chia hết cho 2
th1: n=3k => n chia hết cho 3 => n(n+1) (2n+1) chia hết cho 3
th2: n=3k+1 => 2n+1= 2(3k+1)+ 1=2*3k+2 +1=6k+3 chia hết cho 3 => n(n+1) (2n+1) chia hết cho 3
th3: n=3k+2 => n+1= 3k+2+1= 3k+3 chia hết cho 3 nên n(n+1) (n+2) chia hết cho 3
Vậy với mọi trường hợp n(n+1) (2n+1) chia hết cho 3
=> n(n+1) (2n+1) chia hết cho 2 và 3 => n(n+1) (n+2) chia hết cho 6