K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 6 2017

Ta có :

a3 + b3 + c3 = 3abc

=> a3 + b3 + c3 - 3abc = 0

Đưa về hằng đẳng thức phụ : a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca)

Vô link này sẽ có thêm vài hệ thức của hằng nữa : Bảy hằng đẳng thức đáng nhớ – Wikipedia tiếng Việt

=> a3 + b3 + c3 - 3abc = (a + b + c)(a2 + b2 + c2 - ab - bc - ca) = 0

=> \(\orbr{\begin{cases}a+b+c=0\\a^2+b^2+c^2-ab-bc-ca=0\left(2\right)\end{cases}}\)

Từ (2) ta có :

a2 + b2 + c2 - ab - bc - ca = 0

<=> 2a2 + 2b2 + 2c2 - 2ab - 2bc - 2ca = 0

<=> (a2 - 2ab + b2) + (b2 - 2ab + c2) + (c2 - 2ca + a2) = 0

<=> (a - b)2 + (b - c)2 + (c - a)2 = 0

<=> \(\hept{\begin{cases}\left(a-b\right)^2=0\\\left(b-c\right)^2=0\\\left(c-a\right)^2=0\end{cases}}\Leftrightarrow\hept{\begin{cases}a=b\\b=c\\c=a\end{cases}}\Rightarrow a=b=c\)

a: 3(x-1)-2(x+1)=-3

=>3x-3-2x-2=-3

=>x-5=-3

=>x=2

Thay x=2 vào pt(1), ta được:

\(2m^2+m-6=0\)

=>2m2+4m-3m-6=0

=>(m+2)(2m-3)=0

=>m=-2 hoặc m=3/2

c: \(x^2+x+1=x^2+x+\dfrac{1}{4}+\dfrac{3}{4}=\left(x+\dfrac{1}{2}\right)^2+\dfrac{3}{4}>0\forall x\)

12 tháng 8 2017

Câu a : Không hiểu

Câu b :

\(2x^2-x-1=0\)

\(\Leftrightarrow2x^2-2x+x-1=0\)

\(\Leftrightarrow2x\left(x-1\right)+\left(x-1\right)=0\)

\(\Leftrightarrow\left(x-1\right)\left(2x+1\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\Rightarrow x=1\\2x+1=0\Rightarrow x=-\dfrac{1}{2}\end{matrix}\right.\)

12 tháng 8 2017

a,\(\left(x+5\right)^2-\left(x+5\right)\left(x-5\right)=20\)

\(\Leftrightarrow\left(x+5\right)\left(x+5-x+5\right)=20\)

\(\Leftrightarrow10x+50=20\)\(\Leftrightarrow x=-3\)

b,\(2x^2-x-1=2x^2-2x+x-1\)

\(=2x\left(x-1\right)+\left(x-1\right)\)\(=\left(x-1\right)\left(2x+1\right)\)\(=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-1=0\\2x+1=0\end{matrix}\right.\)\(\Leftrightarrow\left[{}\begin{matrix}x=1\\x=\dfrac{-1}{2}\end{matrix}\right.\)

\(a+b+c=0\Rightarrow c=-\left(a+b\right)\)

\(\Rightarrow a^3+b^3+c^3=a^3+b^3+[-\left(a+b\right)]^3=\)\(a^3+b^3-a^3-3a^2b-3ab^2-b^3\)

\(=3ab[-\left(a+b\right)]=3abc\left(đpcm\right)\)

3:

a: =>x=0 hoặc x+5=0

=>x=0 hoặc x=-5

b: =>x^2=4

=>x=2 hoặc x=-2

c: =>(x-5)(2x+1+x+6)=0

=>(x-5)(3x+7)=0

=>x=5 hoặc x=-7/3

12 tháng 5 2023

1.

a. 2x - 6 > 0 

\(\Leftrightarrow\)  2x  > 6

\(\Leftrightarrow\)    x  > 3

S = \(\left\{x\uparrow x>3\right\}\) 

b. -3x + 9 > 0

\(\Leftrightarrow\)  - 3x   > - 9 

\(\Leftrightarrow\)      x < 3

S = \(\left\{x\uparrow x< 3\right\}\) 

c. 3(x - 1) + 5 > (x - 1) + 3

\(\Leftrightarrow\) 3x - 3 + 5 > x - 1 + 3

\(\Leftrightarrow\) 3x - 3 + 5 - x + 1 - 3 > 0

\(\Leftrightarrow\) 2x > 0 

\(\Leftrightarrow\)   x > 0

S = \(\left\{x\uparrow x>0\right\}\) 

d. \(\dfrac{x}{3}-\dfrac{1}{2}>\dfrac{x}{6}\) 

\(\Leftrightarrow\dfrac{2x}{6}-\dfrac{3}{6}>\dfrac{x}{6}\)

\(\Leftrightarrow2x-3>x\)

\(\Leftrightarrow2x-3-x>0\)

\(\Leftrightarrow x-3>0\)

\(\Leftrightarrow x>3\)

\(S=\left\{x\uparrow x>3\right\}\)

2.

a. 

Ta có: a > b

3a > 3b (nhân cả 2 vế cho 3)

3a + 7 > 3b + 7 (cộng cả 2 vế cho 7)

b. Ta có: a > b

a > b (nhân cả 2 vế cho 1)

a + 3 > b + 3 (cộng cả 2 vế cho 3) (1)

Ta có; 3 > 1

b + 3 > b + 1 (nhân cả 2 vế cho 1b) (2)

Từ (1) và (2) \(\Rightarrow\) a + 3 > b + 1 

c.

5a - 1 + 1 > 5b - 1 + 1 (cộng cả 2 vế cho 1)

5a . \(\dfrac{1}{5}\) > 5b . \(\dfrac{1}{5}\) (nhân cả 2 vế cho \(\dfrac{1}{5}\) )

a > b

3.

a. 2x(x + 5) = 0

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\) 

\(S=\left\{0,-5\right\}\)

b. x2 - 4 = 0 

\(\Leftrightarrow x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

\(S=\left\{0,4\right\}\)

d. (x - 5)(2x + 1) + (x - 5)(x + 6) = 0

\(\Leftrightarrow\left(x-5\right)\left(2x+1+x+6\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(3x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-7}{3}\end{matrix}\right.\)

\(S=\left\{5,\dfrac{-7}{3}\right\}\)

 

15 tháng 10 2017

Tìm x:

\(5x\left(x-1\right)=x-1\)

\(5x\left(x-1\right)-\left(x-1\right)=0\)

\(\left(5x-1\right)\left(x-1\right)=0\)

\(\Rightarrow\)\(\left[{}\begin{matrix}5x-1=0\\x-1=0\end{matrix}\right.\)\(\Rightarrow\)\(\left[{}\begin{matrix}x=\dfrac{1}{5}\\x=1\end{matrix}\right.\)

Vậy x=\(\dfrac{1}{5}\)hoặc x=1

\(2\left(x+5\right)-x^2-5x=0\)

\(2\left(x+5\right)-x\left(x+5\right)=0\)

\(\left(2-x\right)\left(x+5\right)=0\)

\(\Rightarrow\left[{}\begin{matrix}2-x=0\\x+5=0\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=2\\x=-5\end{matrix}\right.\)

Vậy...

15 tháng 10 2017

A)\(x^2+5x-6=x^2-x+6x-6\\ =\left(x-1\right)\left(x+6\right)\)

B)\(5x^2+5xy-x-y=5x\left(x+y\right)-\left(x+y\right)\\ =\left(x+y\right)\left(5x-1\right)\)

C)\(7x-6x^2-2=-6x^2+3x+4x-2\\ =-3x\left(2x-1\right)+2\left(2x-1\right)=\left(2x-1\right)\left(2-3x\right)\)

D)\(x^2+4x+3=x^2+x+3x+3=\left(x+1\right)\left(x+3\right)\)

E)\(2x+3x-5=5x-5=5\left(x-1\right)\)

F)\(16x-5x^3=x\left(16-5x^2\right)\)

 

14 tháng 9 2017

bai dai dong qua

14 tháng 9 2017

a) (x-2)^3-x(x+1)(x-1)+6x(x-3)=0

\(x^3-6x^2+12x-8-x\left(x^2-1\right)+6x\left(x-3\right)=0\)

\(x^3-6x^2+12x-8-x^3+x+6x^2-18x=0\)

\(-5x-8=0\)

\(x=-\frac{8}{5}\)

Mai mik làm mấy bài kia sau