Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ác Mộng sai rồi:
Ta có:\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\Rightarrow\left(a+b\right)\left(c-a\right)=\left(a-b\right)\left(c+a\right)\Leftrightarrow ac-a^2+bc-ab=ac+a^2-bc-ab\Leftrightarrow2a^2=2bc\Leftrightarrow a^2=bc\)
Vậy có thể đảo lại là đúng!!!!!
Chúc bạn học tốt ^_^
Thay vì áp dụng t/c dãy tỉ số bằng nhau,ta áp dụng cách đặt k cho ngắn! =)
a) Chứng minh: Nếu \(a^2=bc\) thì \(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
Đặt \(a^2=bc=k\Rightarrow\frac{a}{c}=\frac{b}{a}=k\Rightarrow\hept{\begin{cases}a=kc\\b=ka\end{cases}}\). Thay vào,ta có:
\(\frac{a+b}{a-b}=\frac{kc+ka}{kc-ka}=\frac{k\left(c+a\right)}{k\left(c-a\right)}=\frac{c+a}{c-a}^{\left(đpcm\right)}\)
b)Bạn tham khảo bài của Đỗ Ngọc Hải ở đây nhé: Câu hỏi của ngô minh hoàng - Toán lớp 7 - Học toán với OnlineMath
a^2=cb
=> aa=cb
=>a/c=b/a=a+b/c+a=a-b/c-a
=>a+b/a-b=c+a/c-a
theo bài ra ta có:
\(\frac{a+b}{a-b}=\frac{c+a}{c-a}\)
=> \(\frac{a+b}{c+a}=\frac{a-b}{c-a}\)
áp dụng t/c dãy tỉ số bằng nhau ta có:
\(\frac{a+b}{c+a}=\frac{a-b}{c-a}=\frac{a+b+a-b}{c+a+c-a}=\frac{2a}{2c}=\frac{a}{c}=\frac{a+b-a+b}{c+a-c+a}=\frac{2b}{2a}=\frac{b}{a}\)
=> \(\frac{a}{c}=\frac{b}{a}\)
=> a2= bc (đpcm)
vậy điều ngược lại hoàn toàn đúng
- Chứng minh thuận:
Nhân 2 vế của a/b với d, nhân 2 vế của c/d với b rồi so sánh
- Chứng minh đảo: Hơi khó giải thích...
Cộng ad với bd và bc với bd....
Có gì mà loằng ngoằng vậy.
1./ Thuận: Nếu: \(\frac{a}{b}>\frac{c}{d}\)nhân cả 2 vế BĐT với tích bd >0 (vì b>0; d>0) BĐT không đổi chiều, ta có: \(\frac{a}{b}\cdot bd>\frac{c}{d}\cdot bd\Rightarrow a\cdot d>b\cdot c\)đpcm
2./ Nghịch: Nếu \(a\cdot d>b\cdot c\)chia cả 2 vế BĐT với tích bd >0 (vì b>0; d>0) BĐT không đổi chiều, ta có: \(\frac{a\cdot d}{b\cdot d}>\frac{b\cdot c}{b\cdot d}\Rightarrow\frac{a}{b}>\frac{c}{d}\)đpcm
mk cũng đang cần giải bài đấy đây