K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 11 2023

Ta thấy \(\left(2a+3b\right)+\left(5a+4b\right)=7a+7b⋮7\)

Mà \(2a+3b⋮7\) nên \(5a+4b⋮7\). Ta có đpcm.

3 tháng 1 2016

a) a+4b chia hết cho 7 thì 5a+20b cũng chia hết cho 7

vậy (5a+20b)-(5a+3b) chia hết cho 7 nên 17b chia hết cho7

vì 17 không chia hết cho7 nên b phải chia hết cho 7

5a+3b chia hết cho 7 thì 20a+12b cũng chia hết cho 7

a+4b chia hết cho 7 thì 3a +12b cũng chia hết cho 7

vậy (20a+12b)-(3a+12b) chia hết cho7 nên 17a chia hết cho7

vì 17 không chia hết cho7 nên a phải chia hết cho 7

vì a chia hết cho7 và b chia hết cho 7 nên a+4b chia hết cho 7

b) tương tự như câu a

tích mình nhé Kim Chi !

6 tháng 11 2017

Câu trả lời hay nhất:  + ta chứng minh a,b,c có ít nhất một số chia hết cho 3 
giả sử cả 3 số trên đều không chia hết cho 3 
=> a^2 = 1 (mod3) và b^2 = 1 (mod3) (bình phương 1 số chia hết cho 3 hoạc chia 3 dư 1) 
=> a^2 + b^2 = 2 (mod3) nhưng c^2 = 1 (mod3) => mâu thuẫn 
Vậy có ít nhất 1 số chia hết cho 3 
+ tương tự,có ít nhất 1 số chia hết cho 4,vì giả sử cả 3 số a,b,c đều không chia hết cho 4 
=> a^2 = 1 (mod4) và b^2 = 1 (mod4) => a^2 + b^2 = 2 (mod 4) nhưng c^2 = 1 (mod 4) => mâu thuẫn 
vậy có ít nhất 1 số cgia hết cho 4 
+ tương tự a^2 = 1 (mod 5) hoạc a^2 = -1 (mod 5) hoạc a^2 = 4 (mod 5) 
và -1 + 1 = 0,1 + 4 = 5,-1 + 4 = 3 
=> phải có ít nhất 1 số chia hết cho 5 
Vậy abc chia hết cho BCNN(3,4,5) = 60 hay abc chia hết 60

2 tháng 12 2017

a+5b ⋮ 7
=> 3(a+5b) ⋮7
=> 3a+15b⋮7
=> 3a+15b +7a -14b⋮7
=> 10a+b⋮7
chúc bn hok tốt ^_^

3 tháng 10 2024

abc = a . 100 + b . 10 + c
       = (a . 98 + b . 7) + 2 . a + 3 . b + a
  Ta có : a.98 + b.7 chia hết cho 7
 => 2a + 3b + c chia hết cho 13 

25 tháng 1 2016

abcdeg = 100000a + 10000b + 1000c + 100d + 10e + g = 100002a - 2a + 10003b - 3b + 1001c - c + 98d + 2d + 7e + 3e + g = (100002a + 10003b + 1001c + 98d + 7e) + (g + 3e + 2d - c - 3b - 2a) = 7(14286a + 1429b + 143c + 14d + e) + (g + 3e + 2d - c - 3b - 2a) 

Vì 7(14286a + 1429b + 143c + 14d + e) chia hết cho 7,  g + 3e + 2d - c - 3b - 2a chia hết cho 7

=> abcdeg chia hết cho 7

Giả sử: abc¯¯¯¯¯¯¯+(2a+3b+c)abc¯+(2a+3b+c)chia hết cho7, ta có:

abc¯¯¯¯¯¯¯+(2a+3b+c)=a.100+b.10+c+2a+3b+c=a.98+7.babc¯+(2a+3b+c)=a.100+b.10+c+2a+3b+c=a.98+7.b

Vì a.98a.98 chia hết cho 7(98 chia hết cho 7)7.b7.b chia hết cho 7 ⇒a.98+b.7⇒a.98+b.7 chia hết cho 7

⇒abc¯¯¯¯¯¯¯+(2a+3b+c)⇒abc¯+(2a+3b+c)chia hết cho 7

Mà theo đầu đề bài abc¯¯¯¯¯¯¯abc¯chia hết cho 7 => 2a+3b+c chia hết cho 7

14 tháng 2 2020

Ta có : 2a+3b\(⋮\)7

\(\Rightarrow\)4(2a+3b)\(⋮\)7

\(\Rightarrow\)8a+12b\(⋮\)7

\(\Rightarrow\)8a+5b+7b\(⋮\)7

Vì 7b\(⋮\)7

\(\Rightarrow\)8a+5b\(⋮\)7

Vậy 8a+5b\(⋮\)7.

23 tháng 12 2021

a/

\(5a+2b⋮7\Rightarrow2\left(5a+2b\right)=10a+4b⋮7\)

\(7a⋮7\)

\(\Rightarrow10a+4b-7a=3a+4b⋮7\)

23 tháng 5 2018

a, n(n+1)(n+2)

nhận xét : 

n; n+1; n+2 là 3 số tự nhiên liên tiếp

=> có 1 số chia hết cho 2 và có 1 số chia hết cho 3             (1)

ƯCLN(2;3) = 1   (2)

(1)(2) => n(n+1)(n+2) \(⋮\) 6

b, 3a + 5b \(⋮\) 8

=> 5(3a + 5b) \(⋮\) 8

=> 15a + 25b \(⋮\) 8

3(5a + 3b) = 15a + 9b

xét hiệu : 

(15a + 25b) - (15a + 9b)

= 15a + 25b - 15a - 9b

= (15a - 15a) + (25b - 9b)

= 0 + 16b

= 16b và (3;5) = 1

=> 5a + 3b \(⋮\) 8

c, làm tương tự câu b