K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

17 tháng 1 2016

tick đi rồi làm cho

 

31 tháng 1 2017

áp dụng : nếu x+y+z=0 thì x3+y3+z3=3xyz (có thể tự c/m)

trong bài thì x+y+z+3=0  hay (x+1)+(y+1)+(z+1)=0 

23 tháng 12 2017

từ giả thiết => \(\frac{1}{x+y+z}=\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

sau đó quy đòng và tách nhân tử là (x+y)(y+z)(z+x)=0

=> 2 số sẽ đối nhau, nên sẽ tồn tại 1 số = a

13 tháng 11 2019

\(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-\frac{1}{x+y+z}=0\)

\(\Leftrightarrow\frac{x+y}{xy}+\frac{x+y}{z\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\cdot\frac{xy+z\left(x+y+z\right)}{xyz\left(x+y+z\right)}=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

\(\Leftrightarrow x=-y\left(h\right)y=-z\left(h\right)z=-x\)

Nếu 

\(x=-y\Rightarrow\frac{1}{x^{2019}}+\frac{1}{y^{2019}}+\frac{1}{z^{2019}}=\frac{1}{x^{2019}}-\frac{1}{x^{2019}}+\frac{1}{z^{2019}}=\frac{1}{z^{2019}}\)

\(\frac{1}{x^{2019}+y^{2019}+z^{2019}}=\frac{1}{x^{2019}-x^{2019}+z^{2019}}=\frac{1}{z^{2019}}\)

Tương tự các TH còn lại nha!

P/S:Có 1 bài chặt hơn ntnày:

Cho \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\) thì \(\frac{1}{x^n}+\frac{1}{y^n}+\frac{1}{z^n}=\frac{1}{x^n+y^n+z^n}\) với n lẻ.

17 tháng 8 2019

Đặt x+1=a,y+1=b,z+1=c

Theo bài ra ta có:

A^3+b^3+c^3=3abc

hay (a+b)^3-3a(b^2-)3(a^2)b+c^3-3abc=0

Hay (a+b)^3+c^3-3ab(a+b+c)=0

Hay (a+b+c)((a+b)^2-(a+b)×c+c^2)-3ab(a+b+c)=0

Hay(a+b+c)(a^2+b^2+c^2-ab-bc-ac)=0(1)

Mà x+y+z=-3 hay (x+1)+(y+1)+(z+1)=0 hay a+b+c=0(2)

Từ (1)(2) suy ra 0×(a^2+b^2+c^2-ab-bc-ac)=0

Vậy (1) đúng. Đề bài được cm

17 tháng 8 2019

thanks bn nhiều

7 tháng 10 2020

Ta có: \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\frac{xy+yz+zx}{xyz}=\frac{1}{x+y+z}\)

\(\Leftrightarrow\left(xy+yz+zx\right)\left(x+y+z\right)=xyz\)

\(\Leftrightarrow x^2y+xy^2+y^2z+yz^2+z^2x+zx^2+3xyz-xyz=0\)

\(\Leftrightarrow\left(x^2y+xy^2\right)+\left(yz^2+z^2x\right)+\left(zx^2+2xyz+y^2z\right)=0\)

\(\Leftrightarrow xy\left(x+y\right)+z^2\left(x+y\right)+z\left(x+y\right)^2=0\)

\(\Leftrightarrow\left(x+y\right)\left(xy+z^2+yz+zx\right)=0\)

\(\Leftrightarrow\left(x+y\right)\left(y+z\right)\left(z+x\right)=0\)

=> x = -y hoặc y = -z hoặc z = -x

Không mất tổng quát giả sử x = -y, khi đó:

\(\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=-\frac{1}{y^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{z^{2015}}\)

\(\frac{1}{x^{2015}+y^{2015}+z^{2015}}=\frac{1}{-y^{2015}+y^{2015}+z^{2015}}=\frac{1}{z^{2015}}\)

\(\Rightarrow\frac{1}{x^{2015}}+\frac{1}{y^{2015}}+\frac{1}{z^{2015}}=\frac{1}{x^{2015}+y^{2015}+z^{2015}}\)

9 tháng 1 2018

Ta có :

 \(\frac{1}{x}+\frac{1}{y}+\frac{1}{z}=0\Leftrightarrow xy+yz+zx=0\)

Khi đó ta chứng minh được :

\(x^3y^3+y^3z^3+z^3x^3=3x^2y^2z^2\)

Mà \(x+y+z=0\)

\(\Rightarrow\)\(x^3+y^3+z^3=3xyz\)

Từ đó ta suy ra :

\(\frac{x^6+y^6+z^6}{x^3+y^3+z^3}=\frac{\left(x^3+y^3+z^3\right)^2-2\left(x^3y^3+y^3z^3+z^3x^3\right)}{x^3+y^3+z^3}\)

\(=\frac{\left(3xyz\right)^2-2.3.x^2y^2z^2}{3xyz}\)

\(=\frac{9x^2y^2z^2-6x^2y^2z^2}{3xyz}\)

\(=xyz\)( ĐPCM )

Hên xui thôi