Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
P = \(n^4-14n^3+71n^2-154n+120\)
\(=n^4-3n^3-11n^3+33n^2+38n^2-114n-40n+120\)
\(=n^3\left(n-3\right)-11n^2\left(n-3\right)+38n\left(n-3\right)-40\left(n-3\right)\)
\(=\left(n-3\right)\left(n^3-11n^2+38n-40\right)\)
\(=\left(n-3\right)\left(n^3-4n^2-7n^2+28n+10n-40\right)\)
\(=\left(n-3\right)\left(n-4\right)\left(n^2-7n+10\right)\)
\(=\left(n-3\right)\left(n-4\right)\left(n^2-2n-5n+10\right)\)
\(=\left(n-2\right)\left(n-3\right)\left(n-4\right)\left(n-5\right)\)
Ta có P bằng tích 4 số tự nhiên liên tiếp. Mà tích 4 số tự nhiên liên tiếp chia hết cho 24.
\(=>P⋮24\left(đpcm\right).\)
Cách khác:
B= (n^4 - 14n^3 + 49n^2) + 22n^2 -154n +120
= n^2(n^2 -14n +49) + 22n(n-7) +120
= (n(n-7))^2 +10n(n-7) + 12n(n-7) + 10*12
= n(n-7)[n(n-7) + 10] + 12[n(n-7) +10]
= [n(n-7) +10] * [n(n-7) + 12]
= (n^2 - 7n + 10)(n^2 - 7n +12)
= (n-2)(n-5)(n-3)(n-4)
= (n-5)(n-4)(n-3)(n-2)
B là tích của 4 số tự nhiên liên tiếp
=> B chia hết cho 2, 3, 4 mà 2, 3, 4 nguyên tố cùng nhau
=> B chia hết cho 2x3x4
Hay B chia hết cho 24.
=>(đpcm).
kho....................wa..................troi.......................thi.....................ret.................lanh................wa..................tich............................ung.........................ho..............minh......................cho....................do....................lanh
Đặt A=\(n^4-n^2\)
\(=n^2\left(n^2-1\right)\)
\(=n^2\left(n-1\right)\left(n+1\right)\)
\(=n\left(n-1\right)\left(n+1\right)\cdot n\)
Vì \(n;n-1;n+1\) là ba số nguyên liên tiếp
nên \(n\left(n-1\right)\left(n+1\right)⋮3!=6\)
=>\(A=n\cdot n\left(n-1\right)\left(n+1\right)⋮6\)
=>\(A=n^4-n^2⋮12\)
TH1: n=2k
\(A=n\left(n-1\right)\cdot\left(n+1\right)\cdot n\)
\(=2k\cdot n\left(n-1\right)\left(n+1\right)\)
\(n\left(n-1\right)\left(n+1\right)⋮6\)
=>\(2n\left(n-1\right)\left(n+1\right)⋮2\cdot6=12\)
=>\(A⋮12\)(1)
TH2: n=2k+1
\(A=n\left(n-1\right)\left(n+1\right)\cdot n\)
\(=\left(2k+1\right)\left(2k+1-1\right)\left(2k+1+1\right)\cdot\left(2k+1\right)\)
\(=2k\left(2k+1\right)\left(2k+2\right)\cdot\left(2k+1\right)\)
\(=4k\left(2k+1\right)\left(k+1\right)\cdot\left(2k+1\right)\)
Vì k;k+1 là hai số nguyên liên tiếp
nên \(k\left(k+1\right)⋮2\)
=>\(4k\left(k+1\right)⋮4\cdot2=8\)
=>\(A=4k\left(2k+1\right)\left(k+1\right)\left(2k+1\right)⋮8\)
mà \(A⋮6\)
nên \(A⋮BCNN\left(6;8\right)=24\)
=>A chia hết cho 12(2)
Từ (1),(2) suy ra \(A⋮12\forall n\in N\)
https://lazi.vn/quiz/d/17912/game-lien-quan-mobile-ra-doi-vao-ngay-thang-nam-nao