Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Ta có: ( n + 3 ) 2 - ( n - 1 ) 2 = 8(n +1) chia hết cho 8.
b) Ta có: ( n + 6 ) 2 - ( n - 6 ) 2 = 24n chia hết cho 24.
Bài 1:
Ta có: \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)\)
\(=2n^3+2n^2-2n^3-2n^2+6n\)
\(=6n⋮6\)
1) \(2n^2\left(n+1\right)-2n\left(n^2+n-3\right)=2n^3+2n^2-2n^3-2n^2+6n=6n⋮6\forall n\in Z\)
2) \(n\left(3-2n\right)-\left(n-1\right)\left(1+4n\right)-1=3n-2n^2-4n^2+3n+1-1=-6n^2+6n=6\left(-n^2+n\right)⋮6\forall n\in Z\)
sửa đề : \(\left(2n-1\right)^3-\left(2n-1\right)\)
đề đó mình nghĩ vậy
1,
A = n^5 - 5n^3 + 4n = n.(n^4 - 5n^2+4)
= n.( n^4 - 4n^2 - n^2 + 4)
= n.[ n^2.(n^2 - 1) - 4.(n^2 - 1)
= n.(n^2) . (n^2 - 4)
= n.(n-1).(n+1).(n+2).(n-2)
A chia hết cho 120 (vìđây là 5 số liên tiếp, vì thế nó chia hết cho 2, 3, 4, 5. Mà 2.3.4.5=120 nên A chia hết cho 120 Với mọi n thuộc Z.)
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
a/ \(n=2m+1\)
\(\Rightarrow\left[\left(2m+1\right)^2+8\left(2m+1\right)+15\right]=4\left(m+2\right)\left(m+3\right)⋮8\)
b/ \(\frac{n^2+1}{n+1}=n-1+\frac{2}{n+1}\)
Để nó chia hết thi n + 1 là ước nguyên của 2
\(\Rightarrow\left(n+1\right)=\left(-2;-1;1;2\right)\)
\(\Rightarrow n=\left(-3,-2,0,1\right)\)
\(\left(2-n\right)\left(n^2-3n+1\right)+n\left(n^2+12\right)+8\)
\(=2n^2-6n+2-n^3+3n^2-n+n^3+12n+8\)
\(=5n^2+5n+10\)
\(=5\left(n^2+n+2\right)⋮5\) (đpcm)
\(\left(n+3\right)^2-\left(n-1\right)^2\)
\(=n^2+6n+9-n^2+2n-1\)
\(=8\left(n+1\right)⋮8\)