Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Ta có:
\(\left(2n-1\right)^3-\left(2n-1\right)\)
\(=\left(2n-1\right)\left[\left(2n-1\right)^2-1\right]\)
\(=\left(2n-1\right)\left(2n-1+1\right)\left(2n-1-1\right)\)
\(=\left(2n-1\right).2n.\left(2n-2\right)\)
\(=4n\left(2n-1\right)\left(n-1\right)\)
Vì \(4n\left(2n-1\right)\left(n-1\right)\) chia hết cho 4 ( Do chứa thừa số 4 )
Đồng thời \(4n\left(2n-1\right)\left(n-1\right)\) chia hết cho 2 ( Do n(n-1) là tích của hai số tự nhiên liên tiếp
\(\Rightarrow4n\left(2n-1\right)\left(n-1\right)\) chia hết cho 8
(2n-1)^3-(2n-1)
=(2n-1)((2n-1)2-1)
=(2n-1)(2n-1+1)(2n-1-1)
=2n(2n-1)(2n-2)
=4n(2n-1)(n-1)
=> 4n(2n-1)(n-1) chia hết cho 4 (1)
mà (2n-1)(n-1)=(n+n-1)(n-1)
=> (2n1)(n-1) chia hết cho 2 (2)
Từ (1) và (2), ta suy ra (2n-1)^3 - (2n-1) chia hết cho 8
(2n-1)^3-(2n-1)
=(2n-1)((2n-1)2-1)
=(2n-1)(2n-1+1)(2n-1-1)
=2n(2n-1)(2n-2)
=4n(2n-1)(n-1)
=> 4n(2n-1)(n-1) chia hết cho 4 (1)
mà (2n-1)(n-1)=(n+n-1)(n-1)
=> (2n1)(n-1) chia hết cho 2 (2)
Từ (1) và (2), ta suy ra (2n-1)^3 - (2n-1) chia hết cho 8
Vì n(n-1) là tích 2 số nguyên liên tiếp => n(n-1) chia hết cho 2.
=>4n(n-1)(2n-1) chia hết cho 8.
BN thử vào câu hỏi tương tự xem có k?
Nếu có thì bn xem nhé!
Nếu k thì xin lỗi đã làm phiền bn
Hội con 🐄 chúc bạn học tốt!!!
Đặt A = n^6 + n^4 – 2n^2 = n^2 (n^4 + n^2 – 2)
= n^2 (n^4 – 1 + n^2 – 1)
= n^2 [(n^2 – 1)(n^2 + 1) + n^2 – 1]
= n^2 (n^2 – 1)(n^2 + 2)
= n.n.(n – 1)(n + 1)(n^2 + 2)
+ Nếu n chẳn ta có n = 2k (k thuộc N)
A = 4k^2 (2k – 1)(2k + 1)(4k^2 + 2) = 8k^2 (2k – 1)(2k + 1)(2k^2 + 1)
Suy ra A chia hết cho 8
+ Nếu n lẻ ta có n = 2k + 1 (k thuộc N)
A = (2k + 1)^2 . 2k (2k + 2)(4k^2 + 4k + 1 + 2)
= 4k(k + 1)(2k + 1)^2 (4k^2 + 4k + 3)
k(k + 1) chia hết cho 2 vì là tích hai số liên tiếp
Suy ra A chia hết cho 8
Do đó A chia hết cho 8 với mọi n thuộc N
* Nếu n chia hết cho 3 thì A chia hết cho 9. Nên A chia hết cho 72.
* Nếu n không chia hết cho 3 thì n^2 là số chính phương nên chia 3 dư 1 (vì số chính phương chia 3 chỉ dư 0 hoặc 1).
Suy ra n^2 + 2 chia hết cho 3. Mà n (n – 1)(n + 1) là tích 3 số liên tiếp nên có số chia hết cho 3. Suy ra A chia hết cho 9. Do đó A chia hết cho 72.
Vậy A chia hết cho 72 với mọi n thuộc N.
https://goo.gl/BjYiDy
sửa đề : \(\left(2n-1\right)^3-\left(2n-1\right)\)
đề đó mình nghĩ vậy