\(n^2-5n-49\) không chia hết cho 169 với mọi n thuộc N

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

DD
9 tháng 3 2021

\(n^2+5n+15⋮49\)

\(\Rightarrow n^2+5n+15⋮7\)

\(\Leftrightarrow n^2-2n+1=\left(n-1\right)^2⋮7\)

\(\Leftrightarrow n-1⋮7\)

\(\Leftrightarrow n=7k+1,k\inℕ\).

\(n^2+5n+15=\left(7k+1\right)^2+5\left(7k+1\right)+15\)

\(=49k^2+49k+6⋮̸49\).

Ta có đpcm. 

28 tháng 12 2017

chứng minh nó không chia hết cho 49 là được. dễ mà

28 tháng 12 2017

Đặt A=n2+11n+39

Giả sử n2+11n+39 chia hết cho 49 thì A chia hết cho 49 => A cũng chia hết cho 7

Ta có A=n2+11n+39=n2+9n+2n+18+21 =  n(n+9)+2(n+9)+21 =(n+9)(n+2)+21

Nhận thấy( n+9)-(n+2)=7 

=>Đồng thời (n+9) và (n+2) chia hết cho 7 => (n+9)(n+2) chia hết cho 49

Ta cũng có A chia hết cho 49 mà 21 ko chia hết cho 49 ( vô lí )

Vậy n2+11n+39 ko chia hết cho 49

11 tháng 8 2020

a) Ta có: \(n^2+7n+22=\left(n+2\right)\left(n+5\right)+12\)

*) Nếu \(n+2⋮3\)thì \(\left(n+2\right)+3⋮3\)hay \(n+5⋮3\)

\(\Rightarrow\left(n+2\right)\left(n+5\right)⋮9\)

Mà 12 không chia hết cho 9 nên \(\left(n+2\right)\left(n+5\right)+12\)không chia hết cho 9

*) Nếu n + 2 không chia hết cho 3 thì n + 5 không chia hết cho 3 suy ra \(\left(n+2\right)\left(n+5\right)\)không chia hết cho 3

Mà 12 chia hết cho 3 nên \(\left(n+2\right)\left(n+5\right)+12\)không chia hết cho 3 nên không chia hết cho 9

Vậy \(n^2+7n+22\)không chia hết cho 9 (đpcm)

b) \(n^2-5n-49=\left(n+4\right)\left(n-9\right)-13\)

*) Nếu \(n+4⋮13\)thì \(\left(n+4\right)-13⋮13\)hay \(n-9⋮13\)

\(\Rightarrow\left(n+4\right)\left(n-9\right)⋮169\)

Mà 13 không chia hết cho 169 nên \(\left(n+4\right)\left(n-9\right)-13\)không chia hết cho 169

*) Nếu n + 4 không chia hết cho 13 thì n - 9 không chia hết cho 13 suy ra \(\left(n+4\right)\left(n-9\right)\)không chia hết cho 13

Mà 13 chia hết cho 13 nên \(\left(n+4\right)\left(n-9\right)-13\)không chia hết cho 13 nên không chia hết cho 169

Vậy \(n^2-5n-49\)không chia hết cho 169 (đpcm)

11 tháng 8 2020

a) G/s phản chứng \(n^2+7n+22⋮9\)

=> \(n^2+4n+4+\left(3n+18\right)⋮9\)

=> \(\left(n+2\right)^2+3\left(n+6\right)⋮9\)

=> \(\left(n+2\right)^2+3\left(n+6\right)⋮3\)

=> \(\left(n+2\right)^2⋮3\)

=> \(\left(n+2\right)^2⋮9\)

Mà: \(\left(n+2\right)^2+\left(3n+18\right)⋮9\) 

=> \(3n⋮9\)

=> \(n⋮3\)

Nhưng khi đó thì: \(n^2+7n⋮3\)nhg 22 ko chia hết cho 3

=> \(n^2+7n+22\)không chia hết cho 3 => Ko thể chia hết cho 9

=> Điều giả sử là sai

=> TA CÓ ĐPCM

13 tháng 11 2015

chưa học đến

cô dạy chậm không cho mình chuyển bậc

21 tháng 12 2018

a) (n + 2)2 - (n - 2)2

= (n + 2 - n + 2)(n + 2 + n - 2)

\(=8n⋮8(\forall n\in Z)\)

b) (n + 7)2 - (n - 5)2

= (n + 7 - n + 5)(n + 7 + n - 5)

= 12.(2n + 2)

= \(24\left(n+1\right)⋮24\left(\forall n\in Z\right)\)