Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Câu a) thôi, câu b) chị chưa nghĩ được!
+) 2 số lẻ liên tiếp có dạng là 2n + 1 và 2n + 3 ( n thuộc N )
+) Đặt d thuộc ƯC ( 2n + 1; 2n + 3 ) ( d thuộc N* )
=> 2n + 1 chia hết cho d
2n + 3 chia hết cho d
Vậy ( 2n + 3 ) - ( 2n + 1 ) chia hết cho d
<=> 2 chia hết cho d
=> d thuộc Ư ( 2 )
=> d thuộc {1; 2}
Nhưng d là số lẻ => d ≠ 2 => d = 1
Vậy 2 số lẻ liên tiếp là 2 số nguyên tố cùng nhau.
Bài 1: Gọi hai số lẻ liên tiếp là $2k+1$ và $2k+3$ với $k$ tự nhiên.
Gọi $d=ƯCLN(2k+1, 2k+3)$
$\Rightarrow 2k+1\vdots d; 2k+3\vdots d$
$\Rightarrow (2k+3)-(2k+1)\vdots d$
$\Rightarrow 2\vdots d\Rightarrow d=1$ hoặc $d=2$
Nếu $d=2$ thì $2k+1\vdots 2$ (vô lý vì $2k+1$ là số lẻ)
$\Rightarrow d=1$
Vậy $2k+1,2k+3$ nguyên tố cùng nhau.
Ta có đpcm.
Bài 2:
a. Gọi $d=ƯCLN(n+1, n+2)$
$\Rightarrow n+1\vdots d; n+2\vdots d$
$\Rightarrow (n+2)-(n+1)\vdots d$
$\Rightarrow 1\vdots d\Rightarrow d=1$
Vậy $(n+1, n+2)=1$ nên 2 số này nguyên tố cùng nhau.
b.
Gọi $d=ƯCLN(2n+2, 2n+3)$
$\Rightarrow 2n+2\vdots d; 2n+3\vdots d$
$\Rightarrow (2n+3)-(2n+2)\vdots d$ hay $1\vdots d$
$\Rightarrow d=1$.
Vậy $(2n+2, 2n+3)=1$ nên 2 số này nguyên tố cùng nhau.
Gọi d là U7CLN(2n+3;n+1)
Ta có : 2n+3 chia hết cho d và n+1 chia hết cho d
Từ đó , ta suy ra : {(2n+3)-[2(n+1)]} chia hết cho d
=>(2n+3)-(2n+2) chia hết cho d
=>(2n-2n)+(3-2) chia hết cho d
=> 0 + 1 chia hết cho d
=> 1 chia hết cho d
Suy ra : d = 1 [ tức là ƯCLN(2n+3;n+1)=1]
Vậy : 2n+3 và n+1 là hai số nguyên tố cùng nhau
Gọi d = UCLN(2n+3; n+1)
Ta có: 2n+3 và n+1 chia hết cho d
[2n+3-2(n+1)] chia hết cho d
2n+3-2n+2 chia hết cho d
=> 1 chia hết cho d
=> d = 1
Vậy hai số 2n+3 và n+1 là hai số nguyên tố cùng nhau
a/ Gọi p là USCLN của 3n+13 và 3n+13 => 3n+13 và 3n+14 chia hết cho p
=> 3n+14-(3n+13)=1 cũng chia hết cho p => p=1 => 3n+13 và 3n+14 là số nguyên tố cùng nhau vì có USCLN=1
b/ Gọi p là USCLN của n+2 và 2n+3 => n+2 và 2n+3 chia hết cho p
n+2 chia hết cho p => 2n+4 cũng chia hết cho p => (2n+4)-(2n+3)=1 cũng chia hết cho p => p=1
=> n+2 và 2n+3 là số nguyên tố cùng nhau vì có USCLN=1
Các bài khác làm tương tự
Cho n \(\in\) N. Chứng minh 2n+ 3 và n + 1 là 2 số nguyên tố cùng nhau.
Giúp mik nha! Mik sẽ tick cho
Gọi ƯCLN(2n+3,n+1) = d
Ta có: 2n+3 chia hết cho d
n+1 chia hết cho d
=>2(n+1) chia hết cho d
Vì 2 số đều chia hết cho d nên hiệu của 2 số cũng chia hết cho d
Ta có: 2n+3-2(n+1) chia hết cho d
2n+3-(2n+2) chia hết cho d
2n+3-2n-2 chia hết cho d
1 chia hết cho d
=> d thuộc Ư (1)
=> d=1
Vậy ƯCLN(2n+3,n+1)=1
Tick ủng hộ mình nha! Bạn hứa rồi đó!
Gọi d là ước chung của n+1 và 2n+3.
n+1 chia hết cho d ; 2n+3 chia hết cho d.
=> 2n+3 - 2(n+1) chia hết cho d.
=> 2n+3 - (2n+2) chia hết cho d
=> 2n+ 3 - 2n-2 chia hết cho d.
=> 1 chia hết cho d.
=> d thuộc { 1 }
=> n+1 và 2n+3 là 2 số nguyên tố cùng nhau.
~CHÚC BN THI TỐT NHA~
mk cũng thi nè