K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

12 tháng 8 2024

Gọi số nguyên tố là p

Vì p là số lẻ nên p ≥ 3

Nếu p = 3 ta có p = 4k + 3 (với k = 0)

Nếu p > 3 khi đó p = 4k + 1; 4k + 2; 4k + 3 

 Nếu p = 4k + 2 ⇒  p = 2.(k + 1) ⋮ 2 (là hợp số loại)

Từ những lập luận trên ta có với mọi số nguyên tố lẻ thì luôn có dạng

P = 4k + 1 hoặc p = 4k + 3

 

 

27 tháng 10 2018

Mỗi số tự nhiên n khi chia cho 4 có thể có 1 trong các số dư: 0; 1; 2; 3. Do đó mọi số tự nhiên n đều có thể viết được dưới 1 trong 4 dạng: 4k, 4k + 1, 4k + 2, 4k + 3

Với k N*.

- Nếu n = 4k thi n  là hợp số.

- Nếu n = 4k + 2 thi n là hợp số.

Vậy mọi số nguyên tố lớn hơn 2 đều có dạng 4k + 1 hoặc 4k +3. Hay mọi số nguyên tố lớn hơn 2 đều có dạng 4n + 1 hoặc 4n +3 với n N*.

13 tháng 2 2018

Mỗi số tự nhiên n khi chia cho 4 có thể có 1 trong các số dư: 0; 1; 2; 3. Do đó mọi số tự nhiên n đều có thể viết được dưới 1 trong 4 dạng: 4k, 4k + 1, 4k + 2, 4k + 3

Với k N*.

- Nếu n = 4k thi n là hợp số.

- Nếu n = 4k + 2 thi n là hợp số.

Vậy mọi số nguyên tố lớn hơn 2 đều có dạng 4k + 1 hoặc 4k +3. Hay mọi số nguyên tố lớn hơn 2 đều có dạng 4n + 1 hoặc 4n +3 với n N*.

16 tháng 11 2015

Gọi \(d=ƯCLN\left(20n+3;30n+4\right)\)

Ta có: \(20n+3\) chia hết cho  \(d\) nên \(3\left(20n+3\right)\) chia hết cho \(d\)

và  \(30n+4\)chia hết cho \(d\) nên \(2\left(30n+4\right)\) chia hết cho \(d\)

Do đó: \(\left[3\left(20n+3\right)-2\left(30n+4\right)\right]\) chia hết cho \(d\)

\(\Leftrightarrow\left(60n+9-60n-8\right)\) chia hết cho  \(d\)

\(\Leftrightarrow1\) chia hết cho \(d\)  \(\Rightarrow d=1\)

Vậy, \(20n+3\) và  \(30n+4\) nguyên tố cùng nhau với \(n\in N\)

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp sốBài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhấtBài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ướcBài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng...
Đọc tiếp

Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002 ( Đây là bài của chịnhunglth đó ạ)
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố

Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p

Các bạn có thể trả lời vài câu hỏi cũng được.Bạn nào trả lời được nhiều mình sẽ ủng hộ cho nha

1
25 tháng 11 2024

😑😐🙌🏿👐🏿🤲🏿🤜🏿🤛🏿✊🏿👊🏿👋🏿🤚🏿👉🏿👈🏿🖖🏿🤟🏿🤘🏿✌🏿🤞🏿🤙🏿👌🏿☝🏿👆🏿👇🏿🖕🏿🙏🏿