K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

9 tháng 7 2019

BĐT đồng bậc nên chuyển vế thẳng tiến ạ!:D Em ko chắc đâu nhá!

a) \(BĐT\Leftrightarrow a^6+a^2b^4+a^4b^2+b^6\ge a^6+2a^3b^3+b^6\)

\(\Leftrightarrow a^2b^4+a^4b^2\ge a^3b^3+a^3b^3\)

\(\Leftrightarrow a^2b^4-a^3b^3+a^4b^2-a^3b^3\ge0\)

\(\Leftrightarrow a^2b^3\left(b-a\right)+a^3b^2\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^3b^2-a^2b^3\right)\ge0\Leftrightarrow a^2b^2\left(a-b\right)^2\ge0\) (đúng)

Đẳng thức xảy ra khi a = b hoặc tồn tại một số bằng 0.

b) \(BĐT\Leftrightarrow2a^4+2b^4\ge a^4+ab^3+a^3b+b^4\)

\(\Leftrightarrow\left(a^4-a^3b\right)-\left(ab^3-b^4\right)\ge0\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\Leftrightarrow\left(a-b\right)\left(a^3-b^3\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\) (luôn đúng do \(a^2+ab+b^2=a^2+2.a.\frac{b}{2}+\frac{b^2}{4}+\frac{3}{4}b^2=\left(a+\frac{b}{2}\right)^2+\frac{3}{4}b^2\ge0\) )

Đẳng thức xảy ra khi a = b

10 tháng 7 2019

NGUYỄN THỊ QUỲNH kcj ạ. Em cũng ko chắc đâu

19 tháng 8 2018

mn giúp mk với

19 tháng 8 2018

hình như đề sai

bạn vào câu hỏi tương tự nhé

học tốt

19 tháng 8 2018

ai giúp mk với, các CTV các god đâu oy, mk cần gấp lắm

14 tháng 6 2016

a) \(=y^4-81-y^4+4=-77\)

b) \(=a^2+b^2+c^2+2ab-2ac-2bc-a^2+2ac-b^2-2ab+2ac=c^2\)

c) Nhân 2 vào biểu thức

11 tháng 5 2017

1.TA CO A^2 + B^2/4 >=AB ... 4- (A^2+1/A^2)>=AB . VOI A^2>=0 TACO A^2 +1/A^2 >=2 ... - (A^2+1/A^2)<=-2                                     SUYRA  AB<= - (A^2+1/A^2)+4 <=-2+4 HAY AB<=2 . MAX AB=2 KHI A=1 , B=2A=2                                                                            2.XY-X-Y=0...XY-X-Y+1=1...X(Y-1)-(Y-1)=1...(X-1)(Y-1)=1. Vi X,Y NGUYEN NEN X-1 , Y-1 NGUYEN                                                      ...(X-1)(Y-1)=1.1= -1 .-1. VS X-1=1,Y-1=1 SUYRA X=Y=2...VS X-1=-1,Y-1=-1 SUYRA X=Y=0                                                              

11 tháng 5 2017

1) \(2a^2+\frac{1}{a^2}+\frac{b^2}{4}=4\Leftrightarrow\left(a^2+\frac{1}{a^2}-2\right)+\left(a^2+\frac{b^2}{4}-ab\right)=4-ab-2\)

\(\Leftrightarrow\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2=2-ab\)

\(VF=2-ab=\left(a-\frac{1}{a}\right)^2+\left(a-\frac{b}{2}\right)^2\ge0\)

hay \(ab\le2\)

Dấu = xảy ra khi \(\hept{\begin{cases}a=\frac{1}{a}\\a=\frac{b}{2}\end{cases}\Leftrightarrow}\orbr{\begin{cases}\left(a;b\right)=\left(1;\frac{1}{2}\right)\\\left(a;b\right)=\left(-1;-\frac{1}{2}\right)\end{cases}}\)

2)

\(PT\Leftrightarrow\left(1-x\right)\left(y-1\right)=-1=1.\left(-1\right)=\left(-1\right).1\)

Xét các Th

3) bunyakovsky