Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a, \(A=\left(2x+5\right)\left(3x+2\right)-\left(3x+5\right)\left(2x+3\right)\)
\(=6x^2+4x+15x+10-6x^2-9x-10x-15=-5\)
Vậy biểu thức ko phụ thuộc biến x
b, \(B=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)
\(=2x^2+x-x^3-2x^2+x^3-x+3=3\)
Vậy biểu thức ko phụ thuộc biến x
Mấy dạng này cứ nhân tung hết ra là xong :")
a.\(A=\left(2x+5\right)\left(3x+2\right)-\left(3x+5\right)\left(2x+3\right)\)
\(=2x\left(3x+2\right)+5\left(3x+2\right)-\left[3x\left(2x+3\right)+5\left(2x+3\right)\right]\)
\(=6x^2+4x+15x+10-6x^2-9x-10x-15\)
\(=\left(6x^2-6x^2\right)+\left(4x+15x-9x-10x\right)+\left(10-15\right)\)
\(=0+0-5\)
\(=-5\)
Vậy bt A khong phụ thuộc vào biến x
b.\(B=x\left(2x+1\right)-x^2\left(x+2\right)+x^3-x+3\)
\(=2x^2+x-x^3-2x^2+x^3-x+3\)
\(=\left(2x^2-2x^2\right)+\left(x-x\right)+\left(-x^3+x^3\right)+3\)
\(=0+0+0+3\)
\(=3\)
Vậy bt B khong phụ thuộc vào biến x
\(A=3\left(x-1\right)^2-\left(x+1\right)^2+2\left(x+3\right)\left(x-3\right)-\left(2x-3\right)^2-\left(5-20x\right)\)
\(=3\left(x^2-2x+1\right)-\left(x^2+2x+1\right)+2\left(x^2-9\right)-\left(4x^2-12x+9\right)-5+20x\)
\(=3x^2-6x+3-x^2-2x-1+2x^2-18-4x^2+12x-9-5+20x=24x-30\)
Vậy biểu thức phụ thuộc giá trị biến x
\(B=-x\left(x+2\right)^2+\left(2x+1\right)^2+\left(x+3\right)\left(x^2-3x+9\right)-1\)
\(=-x\left(x^2+4x+4\right)+4x^2+4x+1+x^3+27-1\)
\(=-x^3-4x^2-4x+4x^2+4x+1+x^3+27-1=27\)
Vậy biểu thức ko phụ thuộc giá trị biến x
Câu 2:
a) \(-2x\left(x-5\right)+3\left(x-1\right)+2x^2-13x\)
\(=-2x^2+10x+3x-3+2x^2-13x\)
\(=\left(-2x^2+2x^2\right)+\left(10x+3x-13x\right)-3\)
\(=0+0-3\)
\(=-3\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
b) \(-x^2\left(2x^2-x-3\right)+x\left(x^2+2x^3+3\right)-3x\left(x^2+x\right)+x^3-3x\)
\(=-2x^4+x^3+3x^2+x^3+2x^4+3x-3x^3-3x^2+x^3-3x\)
\(=\left(-2x^4+2x^4\right)+\left(x^3+x^3-3x^3+x^3\right)+\left(3x^2-3x^2\right)+\left(3x-3x\right)\)
\(=0+0+0+0\)
\(=0\)
Vậy giá trị của biểu thức không phụ thuộc vào biến
Câu 4:
a) \(A=2x\left(3x^2-2x\right)+3x^2\left(1-2x\right)+x^2-7\)
\(A=6x^3-4x^2+3x^2-6x^3+x^2-7\)
\(A=-7\)
Thay \(x=-2\) vào biểu thức A ta có:
\(A=-7\)
Vậy giá trị của biểu thức A là -7 tại \(x=-2\)
b) \(B=x^5-15x^4+16x^3-29x^2+13x\)
\(B=x^5-\left(x+1\right)x^4+\left(x+2\right)x^3-\left(2x+1\right)x^2+\left(x-1\right)x\)
\(B=x^5-x^5-x^4+x^4+2x^3-2x^3-x^2+x^2-x\)
\(B=-x\)
Thay \(x=14\) vào biểu thức B ta được:
\(B=-14\)
Vậy giá trị của biểu thức B tại \(x=14\) là -14
a) \(=2x^2+x-x^3-2x^2+x^3-x+3=3\)
b) \(=3x^3-x^2+5x-2x^3-3x+16-x^3+x^2-2x\)
\(=16\)
A= (x+2)^3 + (x-3)(x^2+3x+9) - 2x (x^2+3x+6) + 19.
A = x^3 + 6x^2 + 12x + 8 + x^3 - 27 - 2x^3 - 6x^2 - 12x + 19
A = -8
=> giá trị của A không phụ thuộc vào biến x