Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
đặt 6 ra ngoài
ta có \(\frac{1}{2}.6.\left(1+\frac{1}{4}+\frac{1}{10}+..............+\frac{1}{1540}\right)\)
=3 \(.\left(1+\frac{1}{1540}\right)\)
=3 \(.\frac{1541}{1540}\)
=3
=>3 > \(\frac{57}{462}\)
=> tích lớn hơn
đặt biểu thức \(\frac{1}{2^2}+\frac{1}{3^2}+...+\frac{1}{n^2}\) là A
ta có \(\frac{1}{2^2}<\frac{1}{1.2};\frac{1}{3^2}<\frac{1}{2.3}.........;\frac{1}{n^2}<\frac{1}{\left(n-1\right).n}\)
<=> A<\(\frac{1}{1.2}<\frac{1}{2.3}.......\frac{1}{\left(n-1\right).n}\)
<=>A<\(\frac{1}{1}-\frac{1}{2}+................+\frac{1}{n-1}-\frac{1}{n}\)
<=>A<\(1-\frac{1}{n}\)
<=>A<\(\frac{n-1}{n}<1\)
=> A<1 (đpcm)
k mình nha mình đầu tiên
1,
ta có : \(\frac{\overline{abab}}{\overline{cdcd}}=\frac{\overline{abab}:101}{\overline{cdcd}:101}=\frac{\overline{ab}}{\overline{cd}}\) ; \(\frac{\overline{ababab}}{\overline{cdcdcd}}=\frac{\overline{ababab}:10101}{\overline{cdcdcd}:10101}=\frac{\overline{ab}}{\overline{cd}}\)
Vậy \(\frac{\overline{abab}}{\overline{cdcd}}=\frac{\overline{ababab}}{\overline{cdcdcd}}\)
2,
\(\frac{1}{2}.\frac{1}{b}=\frac{2}{4}\)
\(\Rightarrow\frac{1.1}{2.b}=\frac{2}{4}\)
\(\Rightarrow\frac{1}{2.b}=\frac{1}{2}\)
\(\Rightarrow2.b=2\)
\(\Rightarrow b=2:2=1\)
\(\frac{abab}{cdcd}=\frac{abab:101}{cdcd:101}=\frac{ab}{cd}\)
mà \(\frac{ababab}{cdcdcd}=\frac{ababab:10101}{cdcdcd:10101}=\frac{ab}{cd}\)
=> \(\frac{abab}{cdcd}=\frac{ababab}{cdcdcd}\)
vậy...
câu 2
\(\frac{1}{2}.\frac{1}{b}=\frac{2}{4}\\ \Rightarrow\frac{1}{b}=\frac{2}{4}:\frac{1}{2}=1\\ \Rightarrow b=1\)
vậy....
\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{4}{5}\Rightarrow\frac{1}{2}+\frac{3}{10}=\frac{1}{2}+\frac{1}{4}+\frac{1}{20}=\frac{4}{5}\)
Như vậy cũng hơi tắt. Nhưng mà **** cho tôi đi. Bai này có công thức đấy.
\(\frac{a}{b}
Câu hỏi của doraemon - Toán lớp 6 - Học toán với OnlineMath
Ta có :
\(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{2011^2}< \frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{2010.2011}\)\(=\frac{1}{1}-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{2010}-\frac{1}{2011}=1-\frac{1}{2011}=\frac{2010}{2011}>\frac{2010}{2680}=\frac{3}{4}\)
Hình như có gì đó sai sai :')
có: \(5B=1+\frac{1}{5}+\frac{1}{5^2}+...+\frac{1}{5^{2015}}\)
=> 4B=5B-B=\(1-\frac{1}{5^{2016}}=\frac{5^{2016}-1}{5^{2016}}\)
Vậy B=\(\frac{5^{2016}-1}{4.5^{2016}}\)
Cám ơn NGUYỄN THẾ HIỆP rất nhiều. Tặng bạn 1!!! KB với mình nha!!!
Đặt A=\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}\)
Ta có:\(\frac{1}{4^2}< \frac{1}{3\cdot4}=\frac{1}{3}-\frac{1}{4}\)
\(\frac{1}{5^2}< \frac{1}{4\cdot5}=\frac{1}{4}-\frac{1}{5}\)
.............................
\(\frac{1}{2011^2}< \frac{1}{2010\cdot2011}=\frac{1}{2010}-\frac{1}{2011}\)
\(\Rightarrow A< \frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+\cdot\cdot\cdot+\frac{1}{2010}-\frac{1}{2011}\)
\(=\frac{1}{3}-\frac{1}{2011}< \frac{1}{3}\)
Vậy A<\(\frac{1}{3}\)hay \(\frac{1}{4^2}+\frac{1}{5^2}+\cdot\cdot\cdot+\frac{1}{2011^2}< \frac{1}{3}\)
\(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}< \frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2010\cdot2011}\)
Gọi \(\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2010\cdot2011}\)là \(S\)
Ta có:
\(S=\frac{1}{3\cdot4}+\frac{1}{4\cdot5}+...+\frac{1}{2010\cdot2011}\)
\(=\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2010}-\frac{1}{2011}\)
\(=\frac{1}{3}-\frac{1}{2011}< \frac{1}{3}\)
Vì \(\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}< S\)mà \(S< \frac{1}{3}\)\(\Rightarrow\frac{1}{4^2}+\frac{1}{5^2}+...+\frac{1}{2011^2}< \frac{1}{3}\)