Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
GIẢI
-Xét tam giac ABC và tam giác ACM:
AMchung
M1^=M2^=90
BM=CN(gt)
=> Tam giác ABC=tam giác ACM (2 cạnh góc vuông)
=> AB=AC(cạnh tương ứng)
=>Tam giác ABC cân
Cho tam giác ABC có đường trung tuyến được vẽ từ đỉnh A vuông góc với cạnh đối diện BC tại trung điểm D của BC.
2 tam giác vuông ADB,ADC bằng nhau vì có chung cạnh góc vuông AD , 2 cạnh góc vuông còn lại là DB = DC (vì D là trung điểm của BC)
=> 2 cạnh tương ứng AB = AC hoặc 2 góc tương ứng ABD = ACD => Tam giác ABC cân tại A
a,C/m \(\Delta\) MNH la tam giác cân
Xét \(\Delta MNP\) :
MH là đường cao đồng thời là đường trung trực
=> \(\Delta MNP\) cân tại M
b, C/m MH là tia phân giác
\(\Delta MNP\) cân tại M => MH là đường trung trực đồng thơi là đường phân giác hay MH là tia phân giác của \(\widehat{NMP}\)a) Xét \(\Delta ABD\) và \(\Delta ACD\)
AB=AC
góc B = góc C
BD= CD
\(\Rightarrow\) \(\Delta ABD\) = \(\Delta ACD\) (c.g.c)
\(\Rightarrow\)góc DAB= góc DAC (2 góc tương ứng)
b) Xét \(\Delta\)AMD và\(\Delta\)ANC:
góc MAD =góc NAD (cmt) (chứng minh ở câu a rồi đó)
AD chung
góc AMD = góc AND= 90o
\(\Rightarrow\) \(\Delta\)AMD = \(\Delta\)ANC (cạnh huyền -góc nhọn)
\(\Rightarrow\) DM=DN
c) Xét \(\Delta\)BMD và \(\Delta\)CND
góc BMD = góc CND=90o
góc MBD= góc NCD
BD= CD
\(\Rightarrow\)\(\Delta\)BMD = \(\Delta\)CND (cạnh huyền _ góc nhọn)
\(\Rightarrow\)BM = CN (2 cạnh tương ứng)
Ta có: AB= AM+BM \(\Rightarrow\)AM= AB- BM
và AC = AN+ CN \(\Rightarrow\)AN= AC-CN
Mà AB = AC và BM = CN
\(\Rightarrow\) AM=AN
\(\Rightarrow\)Tam giác MAN cân tại A
\(\Rightarrow\)Tia phân giác AD là đường trung trực của MN
d) Ta có :\(\Delta\)BMD = \(\Delta\)CND (cmt)
BD = CD (2 cạnh tương ứng)
và MD là cạnh góc vuông của \(\Delta\)BMD
BD là cạnh huyền của \(\Delta\)BMD '
\(\Rightarrow\)MD < BD hay MD < DC
Phù!!!!!!! Cuối cùng cũng xong, k nhé! ~.~
a) vậy phải c/m AD là p/giác nữa
đúng ko ta??????????
tk ủng hộ mk nha