Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 1:
Ta có: \(\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}=\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\)
Áp dụng bđt Cauchy Schwarz có:
\(\dfrac{a^2}{a\sqrt{a^2+8bc}}+\dfrac{b^2}{b\sqrt{b^2+8ac}}+\dfrac{c^2}{c\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{a\sqrt{a^2+8bc}+b\sqrt{b^2+8bc}+c\sqrt{c^2+8bc}}\)
Lại sử dụng bđt Cauchy schwarz ta có:
\(a\sqrt{a^2+8bc}+b\sqrt{b^2+8ac}+c\sqrt{c^2+8ab}=\sqrt{a}\cdot\sqrt{a^3+8abc}+\sqrt{b}\cdot\sqrt{b^3+8abc}+\sqrt{c}\cdot\sqrt{c^3+8abc}\ge\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}\)
\(\Rightarrow\dfrac{a}{\sqrt{a^2+8bc}}+\dfrac{b}{\sqrt{b^2+8ac}}+\dfrac{c}{\sqrt{c^2+8ab}}\ge\dfrac{\left(a+b+c\right)^2}{\sqrt{\left(a+b+c\right)\left(a^3+b^3+c^3+24abc\right)}}=\sqrt{\dfrac{\left(a+b+c\right)^3}{a^3+b^3+c^3+24abc}}\)
=> Ta cần chứng minh: \(\left(a+b+c\right)^3\ge a^3+b^3+c^3+24abc\)
hay \(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge8abc\)
Áp dụng bđt Cosi ta có:
\(a+b\ge2\sqrt{ab};b+c\ge2\sqrt{bc};c+a\ge2\sqrt{ca}\)
Nhân các vế của 3 bđt trên ta đc:
\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge2\sqrt{ab}\cdot2\sqrt{bc}\cdot2\sqrt{ca}=8\sqrt{a^2b^2c^2}=8abc\)
=> Đpcm
Nice proof, nhưng đã quy đồng là phải thế này :v
\(BDT\Leftrightarrow\left(2a-\sqrt{a^2+3}\right)+\left(2b-\sqrt{b^2+3}\right)+\left(2c-\sqrt{c^2+3}\right)\)
\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}\ge0\)
\(\Leftrightarrow\dfrac{a^2-1}{2a+\sqrt{a^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{a}-a\right)+\dfrac{b^2-1}{2b+\sqrt{b^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{b}-b\right)+\dfrac{c^2-1}{2c+\sqrt{c^2+3}}+\dfrac{1}{4}\left(\dfrac{1}{c}-c\right)\ge0\)
\(\Leftrightarrow\left(a^2-1\right)\left(\dfrac{1}{2a+\sqrt{a^2+3}}-\dfrac{1}{4a}\right)+\left(b^2-1\right)\left(\dfrac{1}{2b+\sqrt{b^2+3}}-\dfrac{1}{4b}\right)+\left(c^2-1\right)\left(\dfrac{1}{2c+\sqrt{a^2+3}}-\dfrac{1}{4c}\right)\ge0\)
\(\Leftrightarrow\dfrac{\left(a^2-1\right)\left(2a-\sqrt{a^2+3}\right)}{a\left(2a+\sqrt{a^2+3}\right)}+\dfrac{\left(b^2-1\right)\left(2b-\sqrt{b^2+3}\right)}{b\left(2b+\sqrt{b^2+3}\right)}+\dfrac{\left(c^2-1\right)\left(2c-\sqrt{c^2+3}\right)}{c\left(2c+\sqrt{c^2+3}\right)}\ge0\)
\(\Leftrightarrow\dfrac{\left(a^2-1\right)^2}{a\left(2a+\sqrt{a^2+3}\right)^2}+\dfrac{\left(b^2-1\right)^2}{b\left(2b+\sqrt{b^2+3}\right)^2}+\dfrac{\left(c^2-1\right)^2}{c\left(2c+\sqrt{c^2+3}\right)^2}\ge0\) (luôn đúng)
Khi \(f\left(t\right)=\sqrt{1+t}\) là hàm lõm trên \([-1, +\infty)\) ta có:
\(f(t)\le f(3)+f'(3)(t-3)\forall t\ge -1\)
Tức là \(f\left(t\right)\le2+\dfrac{1}{4}\left(t-3\right)=\dfrac{5}{4}+\dfrac{1}{4}t\forall t\ge-1\)
Áp dụng BĐT này ta có:
\(\sqrt{a^2+3}=a\sqrt{1+\dfrac{3}{a^2}}\le a\left(\dfrac{5}{4}+\dfrac{1}{4}\cdot\dfrac{3}{a^2}\right)=\dfrac{5}{4}a+\dfrac{3}{4}\cdot\dfrac{1}{a}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\sqrt{b^2+3}\le\dfrac{5}{4}b+\dfrac{3}{4}\cdot\dfrac{1}{b};\sqrt{c^2+3}\le\dfrac{5}{4}c+\dfrac{3}{4}\cdot\dfrac{1}{c}\)
Cộng theo vế 3 BĐT trên ta có:
\(VP\le\dfrac{5}{4}\left(a+b+c\right)+\dfrac{3}{4}\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)=2\left(a+b+c\right)=VT\)
Câu 1:
Áp dụng BĐT Cauchy:
\(1+x^3+y^3\geq 3\sqrt[3]{x^3y^3}=3xy\)
\(\Rightarrow \frac{\sqrt{1+x^3+y^3}}{xy}\geq \frac{\sqrt{3xy}}{xy}=\sqrt{\frac{3}{xy}}\)
Hoàn toàn tương tự:
\(\frac{\sqrt{1+y^3+z^3}}{yz}\geq \sqrt{\frac{3}{yz}}; \frac{\sqrt{1+z^3+x^3}}{xz}\geq \sqrt{\frac{3}{xz}}\)
Cộng theo vế các BĐT thu được:
\(\text{VT}\geq \sqrt{\frac{3}{xy}}+\sqrt{\frac{3}{yz}}+\sqrt{\frac{3}{xz}}\geq 3\sqrt[6]{\frac{27}{x^2y^2z^2}}=3\sqrt[6]{27}=3\sqrt{3}\) (Cauchy)
Ta có đpcm
Dấu bằng xảy ra khi $x=y=z=1$
Câu 4:
Áp dụng BĐT Bunhiacopxky:
\(\left(\frac{2}{x}+\frac{3}{y}\right)(x+y)\geq (\sqrt{2}+\sqrt{3})^2\)
\(\Leftrightarrow 1.(x+y)\geq (\sqrt{2}+\sqrt{3})^2\Rightarrow x+y\geq 5+2\sqrt{6}\)
Vậy \(A_{\min}=5+2\sqrt{6}\)
Dấu bằng xảy ra khi \(x=2+\sqrt{6}; y=3+\sqrt{6}\)
------------------------------
Áp dụng BĐT Cauchy:
\(\frac{ab}{a^2+b^2}+\frac{a^2+b^2}{4ab}\geq 2\sqrt{\frac{ab}{a^2+b^2}.\frac{a^2+b^2}{4ab}}=1\)
\(a^2+b^2\geq 2ab\Rightarrow \frac{3(a^2+b^2)}{4ab}\geq \frac{6ab}{4ab}=\frac{3}{2}\)
Cộng theo vế hai BĐT trên:
\(\Rightarrow B\geq 1+\frac{3}{2}=\frac{5}{2}\) hay \(B_{\min}=\frac{5}{2}\). Dấu bằng xảy ra khi $a=b$
Áp dụng bất đẳng thức Bunyakovsky
\(\Rightarrow\sqrt{\left(\dfrac{8}{a^2}+\dfrac{9b^2}{2}+\dfrac{c^2a^2}{4}\right)\left[\left(\sqrt{2}\right)^2+\left(3\sqrt{2}\right)^2+2^2\right]}\ge\left(\sqrt{\dfrac{4}{a}+9b+ca}\right)^2\)
\(\Leftrightarrow2\sqrt{6}\sqrt{\dfrac{8}{a^2}+\dfrac{9b^2}{2}+\dfrac{c^2a^2}{4}}\ge\dfrac{4}{a}+9b+ac\)
Tương tự ta có \(\left\{{}\begin{matrix}2\sqrt{6}\sqrt{\left(\dfrac{8}{b^2}+\dfrac{9c^2}{2}+\dfrac{a^2b^2}{4}\right)}\ge\dfrac{4}{b}+9c+ab\\2\sqrt{6}\sqrt{\left(\dfrac{8}{c^2}+\dfrac{9a^2}{2}+\dfrac{b^2c^2}{4}\right)}\ge\dfrac{4}{c}+9a+bc\end{matrix}\right.\)
\(\Rightarrow2\sqrt{6}S\ge\dfrac{4}{a}+9a+\dfrac{4}{b}+9b+\dfrac{4}{c}+9c+ab+bc+ac\)
\(\Leftrightarrow2\sqrt{6}S\ge\dfrac{4}{a}+a+8a+\dfrac{4}{b}+b+8b+\dfrac{4}{c}+c+8c+ab+bc+ca\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{4}{a}+a\ge2\sqrt{4}=4\\\dfrac{4}{b}+b\ge2\sqrt{4}=4\\\dfrac{4}{c}+c\ge2\sqrt{4}=4\end{matrix}\right.\)
\(\Rightarrow\dfrac{4}{a}+a+8a+\dfrac{4}{b}+b+8b+\dfrac{4}{c}+c+8c+ab+bc+ca\ge12+8a+8b+8c+ab+bc+ac\)
\(\Rightarrow2\sqrt{6}S\ge12+8a+8b+8c+ab+bc+ac\)
\(\Leftrightarrow2\sqrt{6}S\ge12+2a+bc+2b+ac+2c+ab+6\left(a+b+c\right)\)
Áp dụng bất đẳng thức Cauchy
\(\Rightarrow2a+bc\ge2\sqrt{2abc}\)
Tượng tự ta có \(2b+ac\ge2\sqrt{2abc}\) ; \(2c+ab\ge2\sqrt{2abc}\)
\(\Rightarrow12+2a+bc+2b+ac+2c+ab+6\left(a+b+c\right)\ge6\left(a+b+c+\sqrt{2abc}\right)+12\)
\(\Rightarrow2\sqrt{6}S\ge6\left(a+b+c+\sqrt{2abc}\right)+12\)
Theo đề bài ta có \(a+b+c+\sqrt{2abc}\ge10\)
\(\Rightarrow6\left(a+b+c+\sqrt{2abc}\right)+12\ge72\)
\(\Rightarrow S\ge\dfrac{72}{2\sqrt{6}}=6\sqrt{6}\) ( đpcm )
Dấu " = " xảy ra khi \(a=b=c=2\)
Áp dụng BĐT AM-GM ta có:
\(\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{a^3}{\sqrt{b^2+3}}+\dfrac{b^2+3}{8}\ge\dfrac{3a^2}{2}\)
Tương tự cho 2 BĐT còn lại ta cũng có:
\(\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{b^3}{\sqrt{c^2+3}}+\dfrac{c^2+3}{8}\ge\dfrac{3b^2}{2};\dfrac{c^3}{\sqrt{a^2+3}}+\dfrac{c^3}{\sqrt{a^2+3}}+\dfrac{a^2+3}{8}\ge\dfrac{3c^2}{2}\)
Cộng theo vế 3 BĐT trên ta có:
\(2P+\dfrac{a^2+b^2+c^2+9}{8}\ge\dfrac{3\left(a^2+b^2+c^2\right)}{2}\)
\(\Leftrightarrow P\ge\dfrac{\dfrac{3\left(a^2+b^2+c^2\right)}{2}-\dfrac{a^2+b^2+c^2+9}{8}}{2}=\dfrac{3}{2}\)
@DƯƠNG PHAN KHÁNH DƯƠNG
\(a;b;c\ge0\)thỏa mãn \(ab+bc+ca=1\). CMR \(\dfrac{1}{2a+2bc+1}+\dfrac{1}{2b+2ca+1}+\dfrac{1}{2c+2ab+1}\ge1\)
Đảm bảo an ninh :))
Đặt \(\left\{{}\begin{matrix}\sqrt{a^2+b^2}=x\\\sqrt{b^2+c^2}=y\\\sqrt{c^2+a^2}=z\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}a^2=\dfrac{x^2+z^2-y^2}{2}\\b^2=\dfrac{x^2+y^2-z^2}{2}\\c^2=\dfrac{y^2+z^2-x^2}{2}\\x+y+z=\sqrt{2011}\end{matrix}\right.\)
Và \(\left\{{}\begin{matrix}b+c\le\sqrt{2\left(b^2+c^2\right)}=\sqrt{2}y\\a+b\le\sqrt{2}x\\c+a\le\sqrt{2}z\end{matrix}\right.\)
\(VT=\dfrac{1}{2\sqrt{2}}\left(\dfrac{x^2+z^2-y^2}{y}+\dfrac{x^2+y^2-z^2}{z}+\dfrac{y^2+z^2-x^2}{x}\right)\)
\(\ge\dfrac{1}{2\sqrt{2}}\left(\dfrac{2\left(x+y+z\right)^2}{\left(x+y+z\right)}-\left(x+y+z\right)\right)\)
\(=\dfrac{1}{2\sqrt{2}}\left(x+y+z\right)=\dfrac{\sqrt{2011}}{2\sqrt{2}}=VP\)
1: \(\Leftrightarrow a\sqrt{a}+b\sqrt{b}>=\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\)
=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(a-\sqrt{ab}+b-\sqrt{ab}\right)>=0\)
=>\(\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)^2>=0\)(luôn đúng)
Theo hệ quả của bất đẳng thức Cauchy
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow3\ge ab+bc+ca\)
\(\Rightarrow\left\{{}\begin{matrix}3+a^2\ge\left(a+c\right)\left(a+b\right)\\3+b^2\ge\left(a+b\right)\left(b+c\right)\\3+c^2\ge\left(a+c\right)\left(b+c\right)\end{matrix}\right.\)
\(\Rightarrow\left\{{}\begin{matrix}\dfrac{bc}{\sqrt{3+a^2}}\le\dfrac{bc}{\sqrt{\left(a+c\right)\left(a+b\right)}}\\\dfrac{ca}{\sqrt{3+b^2}}\le\dfrac{ca}{\sqrt{\left(a+b\right)\left(b+c\right)}}\\\dfrac{ab}{\sqrt{3+c^2}}\le\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\end{matrix}\right.\)
\(\Rightarrow VT\le\dfrac{bc}{\sqrt{\left(a+c\right)\left(a+b\right)}}+\dfrac{ca}{\sqrt{\left(a+b\right)\left(b+c\right)}}+\dfrac{ab}{\sqrt{\left(a+c\right)\left(b+c\right)}}\)
\(\Leftrightarrow VT\le\sqrt{\dfrac{b^2c^2}{\left(a+c\right)\left(a+b\right)}}+\sqrt{\dfrac{c^2a^2}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\dfrac{a^2b^2}{\left(a+c\right)\left(b+c\right)}}\) (1)
Áp dụng bất đẳng thức Cauchy - Schwarz
\(\Rightarrow\left\{{}\begin{matrix}\sqrt{\dfrac{b^2c^2}{\left(a+c\right)\left(a+b\right)}}\le\dfrac{\dfrac{bc}{a+c}+\dfrac{bc}{a+b}}{2}\\\sqrt{\dfrac{c^2a^2}{\left(a+b\right)\left(b+c\right)}}\le\dfrac{\dfrac{ca}{a+b}+\dfrac{ca}{b+c}}{2}\\\sqrt{\dfrac{a^2b^2}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{\dfrac{ab}{a+c}+\dfrac{ab}{b+c}}{2}\end{matrix}\right.\)
\(\Rightarrow\sqrt{\dfrac{b^2c^2}{\left(a+c\right)\left(a+b\right)}}+\sqrt{\dfrac{c^2a^2}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\dfrac{a^2b^2}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{\left(\dfrac{bc}{a+c}+\dfrac{ab}{a+c}\right)+\left(\dfrac{bc}{a+b}+\dfrac{ca}{a+b}\right)+\left(\dfrac{ab}{b+c}+\dfrac{ca}{b+c}\right)}{2}\)
\(\Rightarrow\sqrt{\dfrac{b^2c^2}{\left(a+c\right)\left(a+b\right)}}+\sqrt{\dfrac{c^2a^2}{\left(a+b\right)\left(b+c\right)}}+\sqrt{\dfrac{a^2b^2}{\left(a+c\right)\left(b+c\right)}}\le\dfrac{a+b+c}{2}=\dfrac{3}{2}\) (2)
Xét \(\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(\Leftrightarrow\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\)
Áp dụng bất đẳng thức Cauchy - Schwarz dạng phân thức
\(\Rightarrow\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\ge\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\)
Theo hệ quả của bất đẳng thức Cauchy
\(\Rightarrow\left(a+b+c\right)^2\ge3\left(ab+bc+ca\right)\)
\(\Rightarrow\dfrac{\left(a+b+c\right)^2}{2\left(ab+bc+ca\right)}\ge\dfrac{3\left(ab+bc+ca\right)}{2\left(ab+bc+ca\right)}=\dfrac{3}{2}\)
\(\Rightarrow\dfrac{a^2}{ab+ac}+\dfrac{b^2}{bc+ab}+\dfrac{c^2}{ca+bc}\ge\dfrac{3}{2}\)
\(\Leftrightarrow\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\ge\dfrac{3}{2}\) (3)
Từ (1) , (2) , (3)
\(\Rightarrow VT\le\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\)
\(\Leftrightarrow\dfrac{bc}{\sqrt{a^2+3}}+\dfrac{ca}{\sqrt{b^2+3}}+\dfrac{ab}{\sqrt{c^2+3}}\le\dfrac{a}{b+c}+\dfrac{b}{c+a}+\dfrac{c}{a+b}\) (đpcm)
Dấu " = " xảy ra khi \(a=b=c=1\)