K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3:

a: =>x=0 hoặc x+5=0

=>x=0 hoặc x=-5

b: =>x^2=4

=>x=2 hoặc x=-2

c: =>(x-5)(2x+1+x+6)=0

=>(x-5)(3x+7)=0

=>x=5 hoặc x=-7/3

12 tháng 5 2023

1.

a. 2x - 6 > 0 

\(\Leftrightarrow\)  2x  > 6

\(\Leftrightarrow\)    x  > 3

S = \(\left\{x\uparrow x>3\right\}\) 

b. -3x + 9 > 0

\(\Leftrightarrow\)  - 3x   > - 9 

\(\Leftrightarrow\)      x < 3

S = \(\left\{x\uparrow x< 3\right\}\) 

c. 3(x - 1) + 5 > (x - 1) + 3

\(\Leftrightarrow\) 3x - 3 + 5 > x - 1 + 3

\(\Leftrightarrow\) 3x - 3 + 5 - x + 1 - 3 > 0

\(\Leftrightarrow\) 2x > 0 

\(\Leftrightarrow\)   x > 0

S = \(\left\{x\uparrow x>0\right\}\) 

d. \(\dfrac{x}{3}-\dfrac{1}{2}>\dfrac{x}{6}\) 

\(\Leftrightarrow\dfrac{2x}{6}-\dfrac{3}{6}>\dfrac{x}{6}\)

\(\Leftrightarrow2x-3>x\)

\(\Leftrightarrow2x-3-x>0\)

\(\Leftrightarrow x-3>0\)

\(\Leftrightarrow x>3\)

\(S=\left\{x\uparrow x>3\right\}\)

2.

a. 

Ta có: a > b

3a > 3b (nhân cả 2 vế cho 3)

3a + 7 > 3b + 7 (cộng cả 2 vế cho 7)

b. Ta có: a > b

a > b (nhân cả 2 vế cho 1)

a + 3 > b + 3 (cộng cả 2 vế cho 3) (1)

Ta có; 3 > 1

b + 3 > b + 1 (nhân cả 2 vế cho 1b) (2)

Từ (1) và (2) \(\Rightarrow\) a + 3 > b + 1 

c.

5a - 1 + 1 > 5b - 1 + 1 (cộng cả 2 vế cho 1)

5a . \(\dfrac{1}{5}\) > 5b . \(\dfrac{1}{5}\) (nhân cả 2 vế cho \(\dfrac{1}{5}\) )

a > b

3.

a. 2x(x + 5) = 0

\(\Leftrightarrow\left[{}\begin{matrix}2x=0\\x+5=0\end{matrix}\right.\) \(\Leftrightarrow\left[{}\begin{matrix}x=0\\x=-5\end{matrix}\right.\) 

\(S=\left\{0,-5\right\}\)

b. x2 - 4 = 0 

\(\Leftrightarrow x\left(x-4\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x=0\\x-4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=0\\x=4\end{matrix}\right.\)

\(S=\left\{0,4\right\}\)

d. (x - 5)(2x + 1) + (x - 5)(x + 6) = 0

\(\Leftrightarrow\left(x-5\right)\left(2x+1+x+6\right)=0\)

\(\Leftrightarrow\left(x-5\right)\left(3x+7\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}x-5=0\\3x+7=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{-7}{3}\end{matrix}\right.\)

\(S=\left\{5,\dfrac{-7}{3}\right\}\)

 

2 tháng 5 2023

a. Ta có: a > b

4a > 4b ( nhân cả 2 vế cho 4)

4a - 3 > 4b - 3 (cộng cả 2 vế cho -3)

b. Ta có: a > b

-2a < -2b ( nhân cả 2 vế cho -2)

1 - 2a < 1 - 2b (cộng cả 2 vế cho 1)

d. Ta có: a < b 

-2a > -2b ( nhân cả 2 vế cho -2)

5 - 2a > 5 - 2b (cộng cả 2 vế cho 5)

 

2 tháng 5 2023

Cảm ưn 😆😊🥰🤩😽🙊🙈🙉

15 tháng 4 2019

1. (a+b)^2 ≥ 4ab

<=> a2+2ab+b2≥ 4ab

<=> a2+2ab+b2-4ab≥ 0

<=> a2-2ab+b2≥ 0

<=> (a-b)^2 ≥ 0 ( luôn đúng )

15 tháng 4 2019

2. a^2 + b^2 + c^2 ≥ ab + bc + ca

<=> 2a^2 + 2b^2 + 2c^2 ≥ 2ab + 2bc + 2ca

<=> 2a^2 + 2b^2 + 2c^2 - 2ab - 2bc - 2ca ≥ 0

<=> (a^2- 2ab+b^2) + (b^2-2bc+c^2) + (c^2-2ca+a^2) ≥ 0

<=> (a-b)^2 + (b-c)^2 + (c-a)^2 ≥ 0 ( luôn đúng)

a) Ta có: \(\dfrac{3a^2-10a+3}{2\left(a-3\right)}\)

\(=\dfrac{3a^2-9a-a+3}{2\left(a-3\right)}\)

\(=\dfrac{3a\left(a-3\right)-\left(a-3\right)}{2\left(a-3\right)}\)

\(=\dfrac{\left(a-3\right)\left(3a-1\right)}{2\left(a-3\right)}\)

\(=\dfrac{3a-1}{2}\)

\(=\dfrac{3}{2}a-\dfrac{1}{2}\)(đpcm)

b) Ta có: \(\dfrac{b^2+3b+9}{b^3-27}\)\(=\dfrac{b^2+3b+9}{\left(b-3\right)\left(b^2+3b+9\right)}\)

\(=\dfrac{1}{b-3}\)

\(=\dfrac{b-2}{\left(b-3\right)\left(b-2\right)}\)

\(=\dfrac{b-2}{b^2-5b+6}\)(đpcm)

2 tháng 1 2021

Rắc rối vậy

15 tháng 8 2018

a) \(36x^2-49=0\)

\(\Leftrightarrow\left(6x\right)^2-7^2=0\)

\(\Leftrightarrow\left(6x-7\right)\left(6x+7\right)=0\)

\(TH_1:6x-7=0\) \(TH_2:6x+7=0\)

\(\Leftrightarrow6x=7\) \(\Leftrightarrow6x=-7\)

\(\Leftrightarrow x=\dfrac{7}{6}\) \(\Leftrightarrow x=-\dfrac{7}{6}\)

Vậy pt có tập nghiệm \(S=\left\{\dfrac{7}{6};-\dfrac{7}{6}\right\}\)

16 tháng 8 2018

Bài 2

a) 36x2-49=0

⇔ (6x)2-49=0

⇔(6x-7).(6x+7)=0

TH1: 6x-7=0 TH2: 6x+7=0

⇔6x=7 ⇔6x=-7

⇔x=7/6 ⇔x=-7/6

14 tháng 9 2017

bai dai dong qua

14 tháng 9 2017

a) (x-2)^3-x(x+1)(x-1)+6x(x-3)=0

\(x^3-6x^2+12x-8-x\left(x^2-1\right)+6x\left(x-3\right)=0\)

\(x^3-6x^2+12x-8-x^3+x+6x^2-18x=0\)

\(-5x-8=0\)

\(x=-\frac{8}{5}\)

Mai mik làm mấy bài kia sau

4 tháng 4 2020

a/CM: \(\left(\frac{a+b}{2}\right)^2\ge ab\)

\(\Leftrightarrow\frac{a+b}{2}\ge\sqrt{ab}\)

\(\Leftrightarrow a+b\ge2\sqrt{ab}\)

\(\Leftrightarrow\left(\sqrt{a}-\sqrt{b}\right)^2\ge0\) ( luôn đúng với mọi a,b>0)

CM: \(\frac{a^2+b^2}{2}\ge\left(\frac{a+b}{2}\right)^2\)

\(\Leftrightarrow\frac{2\left(a^2+b^2\right)}{4}\ge\frac{\left(a+b\right)^2}{4}\)

\(\Leftrightarrow2\left(a^2+b^2\right)\ge\left(a+b\right)^2\)

\(\Leftrightarrow a^2+b^2\ge2ab\) ( luôn đúng)

b/CM: \(\frac{a^3+b^3}{2}\ge\left(\frac{a+b}{2}\right)^3\)

\(\Leftrightarrow\frac{4\left(a^3+b^3\right)}{8}\ge\frac{\left(a+b\right)^3}{8}\)

\(\Leftrightarrow3\left(a^3+b^3\right)\ge3a^2b+3ab^2\)

\(\Leftrightarrow a^2\left(a-b\right)+b^2\left(b-a\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)\left(a^2-b^2\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a+b\right)\ge0\) ( luôn đúng với mọi a,b>0)

c/CM: \(a^4+b^4\ge a^3b+ab^3\)

\(\Leftrightarrow a^3\left(a-b\right)-b^3\left(a-b\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+b^2+ab\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(a^2+\frac{2ab}{2}+\frac{b^2}{4}+\frac{3b^2}{4}\right)\ge0\)

\(\Leftrightarrow\left(a-b\right)^2\left(\left(a+\frac{b}{2}\right)^2+\frac{3b^2}{4}\right)\ge0\) ( luôn đúng)

d/Ta xét hiệu: \(a^4-4a+3\)

\(=a^4-2a^2+1+2a^2-4a+2\)

\(=\left(a-1\right)^2+2\left(a-1\right)^2\ge0\)

Suy ra BĐT luôn đúng

e/Ta xét hiệu:( Làm nhanh)

\(a^3+b^3+c^3-3abc\)\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

\(=\frac{1}{2}\left(a+b+c\right)\left(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2\right)\ge0\)

f/Ta có: \(\frac{a^6}{b^2}-a^4+\frac{a^2b^2}{4}+\frac{b^6}{a^2}-b^4+\frac{a^2b^2}{4}\)

\(=\left(\frac{a^3}{b}-\frac{ab}{2}\right)^2+\left(\frac{b^3}{a}-\frac{ab}{2}\right)^2\ge0\)(1)

\(\frac{a^2b^2}{4}+\frac{a^2b^2}{4}\ge0\)(2)

Lấy (1) trừ (2) được: \(\frac{a^6}{b^2}+\frac{b^6}{a^2}-a^4-b^4\ge0\RightarrowĐPCM\)

g/Làm rồi..xem lại trong trang cá nhân

h/Xét hiệu có: \(\left(a^5+b^5\right)\left(a+b\right)-\left(a^4+b^4\right)\left(a^2+b^2\right)\)

\(=a^5b+ab^5-a^2b^4-a^4b^2\)

\(=a^4b\left(a-b\right)-ab^4\left(a-b\right)\)

\(=ab\left(a^2-b^2\right)\left(a-b\right)\)

\(=ab\left(a+b\right)\left(a-b\right)^2\ge0\forall ab>0\)

Suy ra ĐPCM