Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài 3:
a, (\(x\)+y+z)2
=((\(x\)+y) +z)2
= (\(x\) + y)2 + 2(\(x\) + y)z + z2
= \(x^2\) + 2\(xy\) + y2 + 2\(xz\) + 2yz + z2
=\(x^2\) + y2 + z2 + 2\(xy\) + 2\(xz\) + 2yz
b, (\(x-y\))(\(x^2\) + y2 + z2 - \(xy\) - yz - \(xz\))
= \(x^3\) + \(xy^2\) + \(xz^2\) - \(x^2\)y - \(xyz\) - \(x^2\)z - y3
Đến dây ta thấy xuất hiện \(x^3\) - y3 khác với đề bài, em xem lại đề bài nhé
a: C=-2x^4+3x^2y-2xy+y^2+7
Bậc là 4
b: B=5x^4-3x^2y+2xy+y^2
D=-2x^4+3x^2y-2xy+y^2+7+5x^4-3x^2y+2xy+y^2
=3x^4+2y^2
E=-2x^4+3x^2y-2xy+y^2+7-5x^4+3x^2y-2xy-y^2
=-7x^4+6x^2y-4xy+7
\(x^2+4x+y^2-2xy+x^2+4=0\)
\(\Leftrightarrow\left(x^2-2xy+y^2\right)+\left(x^2+4x+4\right)=0\)
\(\Leftrightarrow\left(x-y\right)^2+\left(x+2\right)^2=0\)
vì \(\left(x-y\right)^2\ge0;\left(x+2\right)^2\ge0\)nên
\(\Rightarrow\orbr{\begin{cases}x+2=0\\x-y=0\end{cases}\Rightarrow\orbr{\begin{cases}x=-2\\y=-2\end{cases}\Rightarrow}x=y=-2}\)
bn chưa bít làm nhé mk chưa hok tới bài đó mà
12366
Đặt Thắng = 1+5+...+52012
5 * Thắng = 5 * ( 1 + 5 +...+ 52012 )
5 * Thắng = 5 + 52 +...+ 52013
5 * Thắng - Thắng = ( 5 + 52+...+52013 ) - ( 1 + 5 +...+ 52012 )
4 * Thắng = 52013 -1
Suy ra Thắng = \(\frac{5^{2013}-1}{4}\). Vậy ta có điều phải chứng minh
(x + y) 2006 + 2007 (y - 1) = 0
=> (x + y) 2006 = 0 và 2007 (y - 1) = 0
=> x + y = 0 và y - 1 = 0
=> x + y = 0 và y = 0 + 1 = 1
=> x + 1 = 0 và y = 1
=> x = 0 - 1 = -1 và y = 1
(x - y - 5) + 2007 (y - 3) 2008 = 0
=> (x - y - 5) = 0 và 2007 (y - 3) 2008 = 0
=> x - y = 0 + 5 = 5 và (y - 3)2008 = 0
=> x - y = 5 và y - 3 = 0 => y = 0 + 3 = 3
=> x - 3 = 5 và y = 3
=> x = 5 + 3 = 8 và y = 3
(x - 1) 2 + (y + 3) 2 = 0
=> (x - 1) 2 = 0 và (y + 3) 2 = 0
=> x - 1 = 0 và y + 3 = 0
=> x = 0 + 1 = 1 và y = 0 - 3 = -3
tìm x y thõa mãn đẳng thức
(x+y) ^ 2006 +2007[y-1] = 0
[x-y-5] + 2007(y-3)^ 2008 = 0
(x-1) ^ 2 + (y+3) ^ 2 = 0
Đề như thế này phải ko nhân Shift rồi ấn số 6 là mũ
Ta có: (x + y)2 = (x + y) . (x + y)
= x2 + xy + yx + y2
= x2 + 2xy + y2
=> x2 + 2xy + y2 = (x + y)2
\(\left(x+y\right)^2=x\left(x+y\right)+y\left(x+y\right)=x^2+xy+y^2+xy=x^2+y^2+2xy\)