Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vì \(\frac{\pi }{2} < a < \pi \) nên \(\cos a < 0\)
Ta có: \({\sin ^2}a + {\cos ^2}a = 1\)
\(\Leftrightarrow \frac{1}{9} + {\cos ^2}a = 1\)
\(\Leftrightarrow {\cos ^2}a = 1 - \frac{1}{9}= \frac{8}{9}\)
\(\Leftrightarrow \cos a =\pm\sqrt { \frac{8}{9}} = \pm \frac{{2\sqrt 2 }}{3}\)
Vì \(\cos a < 0\) nên \(cos a =-\frac{{2\sqrt 2 }}{3}\)
Suy ra \(\tan a = \frac{{\sin a}}{{\cos a}} = \frac{{\frac{1}{3}}}{{ - \frac{{2\sqrt 2 }}{3}}} = - \frac{{\sqrt 2 }}{4}\)
Ta có: \(\sin 2a = 2\sin a\cos a = 2.\frac{1}{3}.\left( { - \frac{{2\sqrt 2 }}{3}} \right) = - \frac{{4\sqrt 2 }}{9}\)
\(\cos 2a = 1 - 2{\sin ^2}a = 1 - \frac{2}{9} = \frac{7}{9}\)
\(\tan 2a = \frac{{2\tan a}}{{1 - {{\tan }^2}a}} = \frac{{2.\left( { - \frac{{\sqrt 2 }}{4}} \right)}}{{1 - {{\left( { - \frac{{\sqrt 2 }}{4}} \right)}^2}}} = - \frac{{4\sqrt 2 }}{7}\)
b) Vì \(\frac{\pi }{2} < a < \frac{{3\pi }}{4}\) nên \(\sin a > 0,\cos a < 0\)
\({\left( {\sin a + \cos a} \right)^2} = {\sin ^2}a + {\cos ^2}a + 2\sin a\cos a = 1 + 2\sin a\cos a = \frac{1}{4}\)
Suy ra \(\sin 2a = 2\sin a\cos a = \frac{1}{4} - 1 = - \frac{3}{4}\)
Ta có: \({\sin ^2}a + {\cos ^2}a = 1\;\)
\( \Leftrightarrow \left( {\frac{1}{2} - {\cos }a} \right)^2 + {\cos ^2}a - 1 = 0\)
\( \Leftrightarrow \frac{1}{4} - \cos a + {\cos ^2}a + {\cos ^2}a - 1 = 0\)
\( \Leftrightarrow 2{\cos ^2}a - \cos a - \frac{3}{4} = 0\)
\( \Rightarrow \cos a = \frac{{1 - \sqrt 7 }}{4}\) (Vì \(\cos a < 0)\)
\(\cos 2a = 2{\cos ^2}a - 1 = 2.{\left( {\frac{{1 - \sqrt 7 }}{4}} \right)^2} - 1 = - \frac{{\sqrt 7 }}{4}\)
\(\tan 2a = \frac{{\sin 2a}}{{\cos 2a}} = \frac{{ - \frac{3}{4}}}{{ - \frac{{\sqrt 7 }}{4}}} = \frac{{3\sqrt 7 }}{7}\)
a) Ta có:
\(\begin{array}{l}{\sin ^4}\alpha - {\cos ^4}\alpha = 1 - 2{\cos ^2}\alpha \\ \Leftrightarrow \left( {{{\sin }^2}\alpha + {{\cos }^2}\alpha } \right)\left( {{{\sin }^2}\alpha - {{\cos }^2}\alpha } \right) = 1 - 2{\cos ^2}\alpha \\ \Leftrightarrow {\sin ^2}\alpha - {\cos ^2}\alpha - 1 + 2{\cos ^2}\alpha = 0\\ \Leftrightarrow {\sin ^2}\alpha + {\cos ^2}\alpha - 1 = 0\\ \Leftrightarrow 1 - 1 = 0\\ \Leftrightarrow 0 = 0\end{array}\)
Đẳng thức luôn đúng
b) Ta có:
\(\begin{array}{l}\tan \alpha + \cot \alpha = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{{\sin \alpha }}{{\cos \alpha }} + \frac{{\cos \alpha }}{{\sin \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{{{{\sin }^2}\alpha + {{\cos }^2}\alpha }}{{\cos \alpha .\sin \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\\ \Leftrightarrow \frac{1}{{\sin \alpha .\cos \alpha }} = \frac{1}{{\sin \alpha .\cos \alpha }}\end{array}\)
Đẳng thức luôn đúng
Ta có:
\({\sin ^2}a + {\cos ^2}a = 1 \Leftrightarrow {\left( {\frac{2}{{\sqrt 5 }}} \right)^2} + {\cos ^2}a = 1 \Leftrightarrow {\cos ^2}a = \frac{1}{5}\)
\(\cos 2a = {\cos ^2}a - {\sin ^2}a = \frac{1}{5} - {\left( {\frac{2}{{\sqrt 5 }}} \right)^2} = - \frac{3}{5}\)
Ta có:
\({\cos ^2}2a + {\sin ^2}2a = 1 \Leftrightarrow {\left( {\frac{{ - 3}}{5}} \right)^2} + {\sin ^2}2a = 1 \Leftrightarrow {\sin ^2}2a = \frac{{16}}{{25}}\)
\(\cos 4a = \cos 2.2a = {\cos ^2}2a - {\sin ^2}2a = {\left( { - \frac{3}{5}} \right)^2} - \frac{{16}}{{25}} = - \frac{7}{{25}}\)
a)
Ta có:
\({\cos ^4}\alpha {\sin ^4}\alpha = \left( {{{\cos }^2}\alpha - {{\sin }^2}\alpha } \right)\left( {{{\cos }^2}\alpha + {{\sin }^2}\alpha } \right) \\= {\cos ^2}\alpha - {\sin ^2}\alpha = {\cos ^2}\alpha - (1 - {\cos ^2}\alpha ) \\= {\cos ^2}\alpha - 1 + {\cos ^2}\alpha = 2{\cos ^2}\alpha - 1\)
(đpcm)
b)
Ta có:
\(\frac{{{{\cos }^2}\alpha + {{\tan }^2}\alpha - 1}}{{{{\sin }^2}\alpha }} = \frac{{{{\cos }^2}\alpha \; + {{\tan }^2}\alpha - {{\sin }^2}\alpha - {{\cos }^2}\alpha }}{{{{\sin }^2}\alpha }} \\= \frac{{{{\tan }^2}\alpha - {{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} = \frac{{\frac{{{{\sin }^2}\alpha }}{{{{\cos }^2}\alpha }} - {{\sin }^2}\alpha }}{{{{\sin }^2}\alpha }} \\= \frac{1}{{{{\cos }^2}\alpha }} - 1 = {\tan ^2}\alpha \)
(đpcm)
\(\begin{array}{l}\cos 2a = \frac{1}{3} \Leftrightarrow {\cos ^2}a - {\sin ^2}a = \frac{1}{3}\,\,\left( 1 \right)\\{\cos ^2}a + {\sin ^2}a = 1\,\,\,\,\left( 2 \right)\end{array}\)
Từ (1) và (2) \( \Rightarrow \left\{ \begin{array}{l}{\cos ^2}a = \frac{2}{3}\\{\sin ^2}a = \frac{1}{3}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\cos a = \pm \frac{{\sqrt 6 }}{3}\\\sin a = \pm \frac{{\sqrt 3 }}{3}\end{array} \right.\)
Do \(\frac{\pi }{2} < a < \pi \)\( \Rightarrow \left\{ \begin{array}{l}\cos a = \frac{{-\sqrt 6 }}{3}\\\sin a = \ \frac{{\sqrt 3 }}{3}\end{array} \right.\)
\(\Rightarrow \tan a = \frac{{\sin a}}{{\cos a}} = - \frac{{\sqrt 2 }}{2}\)
Ta có: \(\sin \left( {a + b} \right)\sin \left( {a - b} \right) = \left( {\sin a\cos b + \cos a\sin b} \right).\left( {\sin a\cos b - \cos a\sin b} \right)\)
\( = {\left( {\sin a\cos b} \right)^2} - {\left( {\cos a\sin b} \right)^2} = {\sin ^2}a\left( {1 - {{\sin }^2}b} \right) - \left( {1 - {{\sin }^2}a} \right){\sin ^2}b\)
\({\sin ^2}a - {\sin ^2}b = {\cos ^2}b\left( {1 - {{\cos }^2}a} \right) - {\cos ^2}a\left( {1 - {{\cos }^2}b} \right) = {\cos ^2}b - {\cos ^2}a\;\) (đpcm)
a) Ta có: \({\left( {\sin \alpha + \cos \alpha } \right)^2} = {\sin ^2}\alpha + 2\sin \alpha \cos \alpha + {\cos ^2}\alpha = 1 + \sin 2\alpha \;\)
b) \({\cos ^4}\alpha - {\sin ^4}\alpha = \left( {{{\cos }^2}\alpha - {{\sin }^2}\alpha } \right)\left( {{{\cos }^2}\alpha + {{\sin }^2}\alpha } \right) = \cos 2\alpha \;\)
\(\frac{sin^23a}{sin^2a}-\frac{cos^23a}{cos^2a}=\frac{sin^23a.cos^2a-cos^23a.sin^2a}{sin^2a.cos^2a}\)
\(=\frac{\left(sin3a.cosa-cos3a.sina\right)\left(sin3a.cosa+cos3a.sina\right)}{sin^2a.cos^2a}=\frac{sin2a.sin4a}{sin^2a.cos^2a}=\frac{sin2a.2sin2a.cos2a}{\frac{1}{4}\left(sin2a\right)^2}\)
\(=\frac{8sin^22a.cos2a}{sin^22a}=8cos2a\)