Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Bài làm
Xét tam giác ABC có
MN // BC
Theo định lí Thales đảo có:
AM/AB = AN/AC. (1)
Xét tam giác APC có
BN // PC
Theo định lí Thales đảo có:
AB/AP = AN/AC. (2)
Từ (1) và (2) => AM/AB = AB/AP => AB² = AM . AP ( đpcm )
A B D E C F
a) Xét \(\Delta DEC\)và \(\Delta ABC\)có:
\(\widehat{EDC}=\widehat{BAC}\left(=90^0\right)\)
\(\widehat{C}\)là góc chung
\(\Rightarrow\Delta DEC~\Delta ABC\left(g.g\right)\)
b) Xét \(\Delta BFA\)và \(\Delta CFB\)có:
\(\widehat{F}\)là góc chung
\(\widehat{FAB}=\widehat{FBC}\left(=90^0\right)\)
\(\Rightarrow\Delta BFA~\Delta CFB\left(g.g\right)\)
\(\Rightarrow\frac{BF}{CF}=\frac{FA}{BF}\Leftrightarrow BF.BF=FA.CF\)
\(\Rightarrow BF^2=FA.FC\left(đpcm\right)\)
...
ΔAED vuông tại A
=>\(AE^2+AD^2=ED^2\)
ΔAEB vuông tại A
=>\(AE^2+AB^2=EB^2\)
ΔACD vuông tại A
=>\(AC^2+AD^2=CD^2\)
ΔABC vuông tại A
=>\(BC^2=AB^2+AC^2\)
\(CD^2-CB^2=CA^2+AD^2-CA^2-AB^2=AD^2-AB^2\)
\(ED^2-EB^2=AE^2+AD^2-AE^2-AB^2=AD^2-AB^2\)
Do đó: \(CD^2-CB^2=ED^2-EB^2\)