K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 4 2016

Vào xem câu hỏi tương tự thử s

31 tháng 10 2016

cho mình hỏi câu a bài 3 bạn làm sao z

15 tháng 3 2020

ABCDFGEKI

a,  có : ^FAD + ^DAE = 90

^BAE + ^DAE = 90

=> ^FAD = ^BAE 

xét tam giác FDA và tam giác EBA có : AB = AD do ABCD là hình vuông (gt)

^FDA = ^EBA = 90

=> tam giác FDA = tam giác EBA (cgv-gnk)

=> AF = AB (Đn)

=> tam giác AFB cân tại A (đn)

có AI là trung tuyến

=> AI _|_ EF                (1)

xét tam giác GIE và tam giác KIF có : ^GIE = ^KIF (đối đỉnh)

FI = IE do I là trung điểm của EF (gt)

EG // FK (gT) => ^GEI = ^IFK (slt)

=> tam giác GIE = tam giác KIF (g-c-g)

=> EG = FK (đn)

mà EG // FK (gt)

=> EGFK là hình bình hành (dh) và (1)

=> EGFK là hình thoi (dh)

b, kẻ AC

AC là pg của ^BAC do ABCD là hình vuông (gt) => ^DAK + ^KAC = 45     

tam giác  AFE vuông cân (tự cm) => ^IAE = 45 => ^KAC + ^CAE = 45

=> ^DAK = ^CAE 

tam giác ADK vuông tại D => ^AKD = 90 - ^DAK (đl)

^FAC = 90 - ^CAE

=> ^AKD = ^FAC

Xét tam giác AFK và tam giác AFC có : ^AFC chung

=> tam giác AFK đồng dạng với tam giác AFC (g-g)

=> AF/FC = FK/AF

=> AF^2 = KF.KC

c, có BD và AC là đường chéo của hình vuông ABCD 

=> B;D thuộc đường trung trực của AC (2)

xét tam giác AFE vuông tại A có I là trung điểm của EF (gt) => AI = EF/2 (đl)

xét tam giác FEC vuông tại C có I là trung điểm của EF (gt) => CI = EF/2

=> AI = IC 

=> I thuộc đường trung trực của AC và (2)

=> B;I;D thẳng hàng 

d, Có EK = FK do EGFK là hình thoi (câu a)

FK = FD + DK

FD = BE do tam giác ABE = tam giác ADF (Câu a)

=> EK = BE + DK

có chu vi ECK = EC + KC + EK

=> chu vi ECK = EC + KC + BE + DK

= BC + DC

= 2BC 

mà BC = 6

=> Chu vi ECK = 12

26 tháng 1 2017

Giúp mình với, mình cần gấp !!!!!!!!!!!! Thanks các bạn nhìu!

12 tháng 3 2017

Đề ghi hk hỉu

14 tháng 3 2017

có mỗi chữ lượt viết sai thôi mà

a)

Từ ĐKĐB dễ thấy các tứ giác ABID,ABCK là hình bình hành do có các cặp cạnh đối song song với nhau

\(\Rightarrow AB=DI;AB=CK\Rightarrow DI=CK\Rightarrow DK=CI\)

Áp dụng định lý Ta-lét:

\(AB||DK\Rightarrow\frac{DE}{EB}=\frac{DK}{AB}\)

\(AB||CI\Rightarrow\frac{IF}{FB}=\frac{CI}{AB}\)

Maf \(CI=DK\)(cmt)

\(\Rightarrow\frac{DE}{EB}=\frac{IF}{FB}\)Theo định lý Ta-let đảo suy ra EF\(||\)CD

b)Từ các đường thẳng song song, và DI=CK=AB, áp dụng định lý Ta-let:

\(\frac{AB}{EF}=\frac{DI}{EF}=\frac{BD}{BE}=\frac{BE+ED}{BE}=1+\frac{ED}{BE}=1+\frac{DK}{AB}=1+\frac{CE-CK}{AB}=1+\frac{CD-AB}{AB}=\frac{CD}{AB}\)

\(\Rightarrow AB^2=EF.CD\)( đpcm ) 

Bài 1: Cho a2+b2+ab+bc+ac<0. CMR : a2+b2<c2Bài 2: Cho hình vuông ABCD trên cạnh BC lấy điểm E. Từ A kẻ đường thẳng vuông góc vơi AE cắt đường thẳng CD tại F. Gọi I là trung điểm của EF. AI cắt CD tại M. Qua E dựng đường thẳng song song với CD cắt AI tại N.a) Chứng minh tứ giác MENF là hình thoi.b) Chứng minh chi vi tam giác CME không đổi khi E  chuyển động trên BCCâu 3:   Cho tam giác ABC, O là giao điểm...
Đọc tiếp

Bài 1: Cho a2+b2+ab+bc+ac<0. CMR : a2+b2<c2

Bài 2: Cho hình vuông ABCD trên cạnh BC lấy điểm E. Từ A kẻ đường thẳng vuông góc vơi AE cắt đường thẳng CD tại F. Gọi I là trung điểm của EF. AI cắt CD tại M. Qua E dựng đường thẳng song song với CD cắt AI tại N.

a) Chứng minh tứ giác MENF là hình thoi.

b) Chứng minh chi vi tam giác CME không đổi khi E  chuyển động trên BC

Câu 3:   Cho tam giác ABC, O là giao điểm của các đường trung tực trong tam giác, H là trực tâm của tam giác. Gọi P, R, M theo thứ tự là trung điểm các cạnh AB, AC, BC. Gọi Q là trung điểm đoạn thẳng AH.

a.      Xác định dạng của tứ giác OPQR? Tam giác ABC phải thỏa mãn điều kiện gì  để OPQR là hình thoi?

b.     Chứng minh AQ = OM.

c.     Gọi G là trọng tâm của tam giác ABC. Chứng minh H, G, O thẳng hàng.

d.     Vẽ ra ngoài tam giác ABC các hình vuông ABDE, ACFL. Gọi I là trung điểm của EL. Nếu diện tích tam giác ABC không đổi và BC cố định thì I di chuyển trên đường nào?

0
28 tháng 9 2019

Gọi H là trung điểm DC. 

Chứng minh HE// IF( vì cùng //BC)

=> HE vuông FK ( vì FK vuông IF)

Tương tự HF// EI( vì cùng //AD)

=> HF vuông  EK( vì EK vuông IE)

Xét tam giác EFH có EK và FK là 2 đường cao nên K là trực tâm. Suy ra HK vuông FE mà FE //DC nên HK vuông DC tại H suy ra tam giác KDC cân tại K. Nên KD=KC