Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/
\(a\left(b-c\right)-b\left(a+c\right)+c\left(a-b\right)=\)
\(=ab-ac-ab-bc+ac-bc=-2bc\)
b/
\(a\left(1-b\right)+a\left(a^2-1\right)=\)
\(=a-ab+a^3-a=a^3-ab=a\left(a^2-b\right)\)
c/
\(a\left(b-x\right)+x\left(a+b\right)=ab-ax+ax+bx=\)
\(=ab+bx=b\left(a+x\right)\)
Ta có: \(VT=2bc+b^2+c^2-a^2\)
\(=\left(b+c\right)^2-a^2\)
\(=\left(a+b+c\right)\left(-a+b+c\right)\)
\(=2p\left(-a+b+c\right)\)
\(=2p\left(-a+2p-a\right)\)
\(=2p\left(-2a+2p\right)\) 9 ( Vì 2p - a = b + c )
\(=4p\left(-a+p\right)=4p\left(p-a\right)=VP\)
\(\Rightarrowđpcm\)
Ta có : \(4p\left(p-a\right)=2\left(a+b+c\right)\left(\dfrac{a+b+c}{2}-a\right)\)
\(=2\left(a+b+c\right)\left(\dfrac{b+c-a}{2}\right)\)
\(=\left(a+b+c\right)\left(b+c-a\right)\)
\(=ab+ac-a^2+b^2+bc-ab+bc+c^2-ac\)
\(=2bc+b^2+c^2-a^2\left(dpcm\right)\)
Vậy : ........
a) Vì \(\dfrac{a}{b} = \dfrac{c}{d}\) nên \(ad = bc\)
Ta có \(\dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}\)\( \Rightarrow d(a + b) = b(c + d)\)\( \Rightarrow ad + bd = bc + bd\)
\( \Rightarrow ad = bc\) (luôn đúng)
\( \Rightarrow \dfrac{{a + b}}{b} = \dfrac{{c + d}}{d}\)
b) Vì \(\dfrac{a}{b} = \dfrac{c}{d}\) nên \(ad = bc\)
Ta có: \(\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}\)
\(\begin{array}{l} \Rightarrow d(a - b) = b(c - d)\\ \Leftrightarrow ad - bd = bc - bd\\ \Leftrightarrow ad = bc\end{array}\) ( luôn đúng)
Vậy \(\dfrac{{a - b}}{b} = \dfrac{{c - d}}{d}\)
c) Vì \(\dfrac{a}{b} = \dfrac{c}{d}\) nên \(ad = bc\)
Ta có: \(\dfrac{a}{{a + b}} = \dfrac{c}{{c + d}}\)
\(\begin{array}{l} \Rightarrow a(c + d) = c(a + b)\\ \Leftrightarrow ac + ad = ac + bc\\ \Leftrightarrow ad = bc\end{array}\) (luôn đúng)
Vậy \(\dfrac{a}{{a + b}} = \dfrac{c}{{c + d}}\)
a, a/b = c/d => a+b/c+d = a-b/c-d
=> a+b/a-b = c+d/c-d
a) \(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{c}=\frac{b}{d}\)
Áp dụng tính chất của dãy tỉ số bằng nhau; ta có:
\(\frac{a}{c}=\frac{b}{d}=\frac{a+b}{c+d}=\frac{a-b}{c-d}\)
\(\Rightarrow\frac{a+b}{a-b}=\frac{c+d}{c-d}\)(đổi trung tỉ)
1) a(b+c)-b(a-c)=ab+ac-ab+bc=ac+bc=c(a+b)=> đpcm
2) a(b-c)-a(b+d)=ab-ac-ab-ad=-ac-ad=-a(c+d) => đpcm
nhớ LI KE
1) xét VT=a(b+c)-b(a-c)
=ab+ac-ba+bc
=ac+bc
=c(a+b) = VP
vậy VT=VP (đpcm)
2) xét VT=a(b-c)-a(b+d)
=ab-ac-ab-ad
=-ac-ad
=-a(c+d)=VP
vậy VT=VP ( đpcm)
\(a\left(b-c\right)-b\left(a+c\right)+c\left(a-b\right)\)
\(=ab-ac-ba-bc+ca-cb=-2bc\)
a(b-c)-b(a+c)+c(a-b)=ab-ab-bc-ac+ac-bc=-2bc