K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: \(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)

b: \(=\dfrac{1+\sqrt{a}}{a-\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

10 tháng 9 2017

22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222

16 tháng 8 2021

b4 : 

\(a,x-1=\left(\sqrt{x}-1\right)\left(\sqrt{x}+1\right)\)

\(b,x-5=\left(\sqrt{x}-\sqrt{5}\right)\left(\sqrt{x}+\sqrt{5}\right)\)

\(c,x+2\sqrt{xy}+y=\left(\sqrt{x}+\sqrt{y}\right)^2\)

\(d,x-4\sqrt{x}\sqrt{y}+4y=\left(\sqrt{x}-2\sqrt{y}\right)^2\)

b5:

\(a,ĐK:x\ge1\)

\(\sqrt{9\left(x-1\right)}+\sqrt{4\left(x-1\right)}-\frac{4}{5}\sqrt{25\left(x-1\right)}=1\)

\(\Leftrightarrow3\sqrt{x-1}+2\sqrt{x-1}-4\sqrt{x-1}=1\)

\(\Leftrightarrow\sqrt{x-1}=1\)

\(\Leftrightarrow x=2\left(tm\right)\)

\(b,ĐK:x\ge5\)

\(\frac{1}{3}\sqrt{9\left(x-5\right)}+\frac{1}{2}\sqrt{4\left(x-5\right)}-\frac{7}{5}\sqrt{25\left(x-5\right)}=2\)

\(\Leftrightarrow\sqrt{x-5}+\sqrt{x-5}-7\sqrt{x-5}=2\)

\(\Leftrightarrow-5\sqrt{x-5}=2\)

\(\Leftrightarrow\sqrt{x-5}=-\frac{2}{5}\left(voli\right)\)

\(c,ĐK:x>0\)

\(\sqrt{x}+\frac{9}{\sqrt{x}}=6\)

\(\Leftrightarrow x+9=6\sqrt{x}\)

\(\Leftrightarrow x-6\sqrt{x}+9=0\)

\(\Leftrightarrow\left(\sqrt{x}-3\right)^2=0\)

\(\Leftrightarrow x=9\left(tm\right)\)

19 tháng 11 2021

\(ĐK:x\ne y;x\ne-y;x^2+xy+y^2\ne0;x^2-xy+y^2\ne0\)

\(A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\left[1:\dfrac{\left(x^3+y^3\right)\left(x^2+y^2\right)}{\left(x-y\right)\left(x^2+xy+y^2\right)\left(x+y\right)\left(x^2+y^2\right)}\right]\\ A=\dfrac{x^2-xy+y^2}{x^2+xy+y^2}\cdot\dfrac{\left(x-y\right)\left(x+y\right)\left(x^2+xy+y^2\right)\left(x^2+y^2\right)}{\left(x+y\right)\left(x^2-xy+y^2\right)\left(x^2+y^2\right)}\\ A=x-y=B\)

\(x=0;y=0\Leftrightarrow B=0\)

Giá trị của A không xác định vì \(x=y\) trái với ĐK:\(x\ne y\)

Vậy \(A\ne B\)

a: \(\sqrt{6+2\sqrt{5}}-\sqrt{6-2\sqrt{5}}\)

\(=\sqrt{5}+1-\sqrt{5}+1\)

=2

c: \(\dfrac{x-y}{\sqrt{x}-\sqrt{y}}=\sqrt{x}+\sqrt{y}\)

d: \(\dfrac{y-2\sqrt{y}+1}{\sqrt{y}-1}=\sqrt{y}-1\)

3 tháng 9 2020

:V

Câu đầu cho x > 0 thì dễ hơn ...... 

Sử dụng BĐT AM - GM ta dễ có:\(D=\sqrt{x}+\frac{9}{\sqrt{x}+2}=\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-2\ge2\sqrt{\left(\sqrt{x}+2\right)\cdot\frac{9}{\sqrt{x}+2}}-2=4\)

Đẳng thức xảy ra tại x=1

\(E=\frac{x+1}{\sqrt{x}}\ge\frac{2\sqrt{x}}{\sqrt{x}}=2\) Đẳng thức xảy ra tại x=1

Làm 2 cái thôi còn lại tương tự bạn nhé :) 

3 tháng 9 2020

+ Ta có: \(D=\sqrt{x}+\frac{9}{\sqrt{x}+2}\)

       \(D=\sqrt{x}+2+\frac{9}{\sqrt{x}+2}-2\)

   Áp dụng bất đẳng thức Cô-si cho phương trình \(\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\) ta có: 

         \(\sqrt{x}+2+\frac{9}{\sqrt{x}+2}\ge\sqrt{\left(\sqrt{x}+2\right).\left(\frac{9}{\sqrt{x}+2}\right)}=\sqrt{9}=3\)

         \(\Rightarrow\)\(D\ge3-2=1\)

   Dấu bằng xảy ra khi và chỉ khi: \(\sqrt{x+2}=\frac{9}{\sqrt{x}+2}\)

                                               \(\Leftrightarrow\left(\sqrt{x}+2\right)^2=9\)

                                               \(\Leftrightarrow\sqrt{x}+2=\pm3\)

                                               \(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}+2=-3\\\sqrt{x}+2=3\end{cases}}\)

                                               \(\Leftrightarrow\orbr{\begin{cases}\sqrt{x}=-5\left(L\right)\\\sqrt{x}=1\end{cases}}\)

                                               \(\Leftrightarrow x=\pm1\)

 Vậy \(S=\left\{\pm1\right\}\)

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

Nếu có thêm điều kiện \(y>1\) thì kết quả là \(\dfrac{1}{x-1}\)