K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

10 tháng 9 2017

22222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222222

a: \(=x-\sqrt{xy}+y-x+2\sqrt{xy}-y=\sqrt{xy}\)

b: \(=\dfrac{1+\sqrt{a}}{a-\sqrt{a}}\cdot\dfrac{\left(\sqrt{a}-1\right)^2}{\sqrt{a}+1}=\dfrac{\sqrt{a}-1}{\sqrt{a}}\)

19 tháng 10 2018

1/ Thực hiện phép tính

a) 9220+12235

 \(=\sqrt{\left(\sqrt{5}-\sqrt{4}\right)^2}+\sqrt{\left(\sqrt{7}-\sqrt{5}\right)^2}\)

\(=\sqrt{5}-\sqrt{4}+\sqrt{7}-\sqrt{5}=\sqrt{7}-\sqrt{4}=\sqrt{7}-2\)

5 tháng 9 2020

a) \(2\sqrt{3x}-4\sqrt{3x}+27-2\sqrt{3x}=27-4\sqrt{3x}\)

b) \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{8x}+28=3\sqrt{2x}+2\sqrt{8x}+28=3\sqrt{2x}+4\sqrt{2x}+28=7\sqrt{2x}+28\)

c) \(\frac{2}{x^2-y^2}\sqrt{\frac{3\left(x+y\right)^2}{2}}=\frac{2}{\left(x-y\right)\left(x+y\right)}.\frac{\sqrt{3}\left|x+y\right|}{\sqrt{2}}=\frac{\sqrt{6}}{x-y}\)

d) \(\frac{2}{2a-1}\sqrt{5a^2\left(1-4x+4a^2\right)}=\frac{2}{2a-1}\sqrt{5a^2\left(2a-1\right)^2}=\frac{2}{2a-1}.\sqrt{5}\left|a\left(2a-1\right)\right|=2a\sqrt{5}\)

Thiếu ĐKXĐ : ..............

5 tháng 9 2020

a) Ta có: \(2\sqrt{3x}-4\sqrt{3x}+27-2\sqrt{3x}\)

        \(=27-4\sqrt{3x}\)

b) Ta có: \(3\sqrt{2x}-5\sqrt{8x}+7\sqrt{8x}+28\)

        \(=3\sqrt{2x}-5.2\sqrt{2x}+7.2\sqrt{2x}+28\)

        \(=3\sqrt{2x}-10\sqrt{2x}+14\sqrt{2x}+28\)

        \(=7\sqrt{2x}+28\)

c) Ta có: \(\frac{2}{x^2-y^2}.\sqrt{\frac{3\left(x+y\right)^2}{2}}\)

        \(=\sqrt{\frac{4}{\left(x-y\right)^2.\left(x+y\right)^2}.\frac{3\left(x+y\right)^2}{2}}\)

        \(=\sqrt{\frac{2.3}{\left(x-y\right)^2}}\)

        \(=\frac{1}{x-y}.\sqrt{6}\)

d) Ta có: \(\frac{2}{2a-1}.\sqrt{5a^2.\left(1-4a+4a^2\right)}\)

        \(=\sqrt{\frac{4}{\left(2a-1\right)^2}.5a^2.\left(2a-1\right)^2}\)

        \(=2a.\sqrt{5}\)

27 tháng 5 2017

Căn bậc hai. Căn bậc ba

Nếu có thêm điều kiện \(y>1\) thì kết quả là \(\dfrac{1}{x-1}\)

16 tháng 6 2017

a, \(\dfrac{b}{\left(a-4\right)^2}.\sqrt{\dfrac{\left(a-4\right)^4}{b^2}}=\dfrac{b}{\left(a-4\right)^2}.\dfrac{\left(a-4\right)^2}{b}=1\)

b, Đặt \(B=\dfrac{x\sqrt{x}-y\sqrt{y}}{\sqrt{x}-\sqrt{y}}\)

\(\sqrt{x}=a,\sqrt{y}=b\)

Ta có: \(B=\dfrac{a^3-b^3}{a-b}=\dfrac{\left(a-b\right)\left(a^2+ab+b^2\right)}{a-b}=a^2+ab+b^2\)

\(\Rightarrow B=x+\sqrt{xy}+y\)

Vậy...

c, \(\dfrac{a}{\left(b-2\right)^2}.\sqrt{\dfrac{\left(b-2\right)^4}{a^2}}=\dfrac{a}{\left(b-2\right)^2}.\dfrac{\left(b-2\right)^2}{a}=1\)

d, \(2x+\dfrac{\sqrt{1-6x+9x^2}}{3x-1}=2x+\dfrac{\sqrt{\left(3x-1\right)^2}}{3x-1}=2x+1\)

16 tháng 6 2017

a:b(a−4)2.√(a−4)4b2(b>0;a≠4)b(a−4)2.(a−4)4b2(b>0;a≠4)

= \(\dfrac{b}{\left(a-4\right)}.\dfrac{\sqrt{\left[\left(a-4\right)^2\right]^2}}{\sqrt{b^2}}\)

=\(\dfrac{b}{\left(a-4\right)^2}.\dfrac{\left(a-4\right)^2}{b}\)

= 1 ( nhân tử với tử mẫu với mẫu rồi rút gọn)

b:x√x−y√y√x−√y(x≥0;y≥0;x≠0)xx−yyx−y(x≥0;y≥0;x≠0)

=\(\dfrac{\sqrt{x^3}-\sqrt{y^3}}{\sqrt{x}-\sqrt{y}}\)

=\(\dfrac{\left(\sqrt{x}\right)^3-\left(\sqrt{y}\right)^3}{\sqrt{x}-\sqrt{y}}\)

=\(\dfrac{\left(\sqrt{x}-\sqrt{y}\right).\left(x+\sqrt{xy}+y\right)}{\sqrt{x}-\sqrt{y}}\)(áp dụng hằng đẳng thức )

= (x+\(\sqrt{xy}\)+y)

c:a(b−2)2.√(b−2)4a2(a>0;b≠2)a(b−2)2.(b−2)4a2(a>0;b≠2)

Tương tự câu a

d:x(y−3)2.√(y−3)2x2(x>0;y≠3)x(y−3)2.(y−3)2x2(x>0;y≠3)

tương tự câu a

e:2x +√1−6x+9x23x−1

= \(2x+\dfrac{\sqrt{\left(3x\right)^2-6x+1}}{3x-1}\)

= 2x+\(\dfrac{\sqrt{\left(3x-1\right)^2}}{3x-1}\)(hằng đẳng thức)

=2x+\(\dfrac{3x-1}{3x-1}\)

=2x+1