K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\dfrac{a^2+3}{\sqrt{a^2+2}}=\dfrac{a^2+2+1}{\sqrt{a^2+2}}=\sqrt{a^2+2}+\dfrac{1}{\sqrt{a^2+2}}\ge2\cdot\sqrt{\left(\sqrt{a^2+2}\right)\cdot\dfrac{1}{\sqrt{a^2+2}}}=2\)

20 tháng 8 2021

\(\dfrac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\dfrac{2b}{b-a}\left(a,b>0;a\ne b\right)\\ =\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2-\left(\sqrt{a}-\sqrt{b}\right)^2+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\\ =\dfrac{4\sqrt{ab}+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\\ =\dfrac{4\sqrt{b}\left(\sqrt{a}+\sqrt{b}\right)}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

Tick plz

Ta có: \(\dfrac{\sqrt{a}+\sqrt{b}}{2\sqrt{a}-2\sqrt{b}}-\dfrac{\sqrt{a}-\sqrt{b}}{2\sqrt{a}+2\sqrt{b}}-\dfrac{2b}{b-a}\)

\(=\dfrac{a+2\sqrt{ab}+b-a+2\sqrt{ab}-b+4b}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{4b+4\sqrt{ab}}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\)

\(=\dfrac{4\sqrt{b}\left(\sqrt{b}+\sqrt{a}\right)}{2\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{b}+\sqrt{a}\right)}\)

\(=\dfrac{2\sqrt{b}}{\sqrt{a}-\sqrt{b}}\)

22 tháng 6 2019

BĐT\(\Leftrightarrow a^2+3>2\sqrt{a^2+2}\left(\sqrt{a^2+2}\ge\sqrt{0+2}>0\right)\)

\(dat:a^2+2=x\)

\(\Rightarrow BĐT\Leftrightarrow x+1>2\sqrt{x}\Leftrightarrow\left(x+1\right)^2>4x\left(2\sqrt{x}\ge0\right)\Leftrightarrow x^2+2x+1-4x>0\Leftrightarrow x^2-2x+1>0\Leftrightarrow\left(x-1\right)^2>0\) \(x=a^2+2;a^2\ge0\Rightarrow a^2+2\ge2\Leftrightarrow x\ge2\Rightarrow x-1\ge1\Rightarrow\left(x-1\right)^2>0\)

nen BĐT đuoc chung minh

22 tháng 6 2019

Áp dụng BĐT AM-GM, ta có:

\(\frac{a^2+3}{\sqrt{1\left(a^2+2\right)}}\ge\frac{a^2+3}{\left(\frac{a^2+2+1}{2}\right)}=\frac{2\left(a^2+3\right)}{a^2+3}=2\)

Nhưng dấu "=" ko xảy ra nên ta có đpcm,

22 tháng 12 2023

\(\dfrac{\sqrt{a}-2}{a+2\sqrt{a}}+\dfrac{8}{a-4}\)

\(=\dfrac{\sqrt{a}-2}{\sqrt{a}\left(\sqrt{a}+2\right)}+\dfrac{8}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)}\)

\(=\dfrac{\left(\sqrt{a}-2\right)^2+8\sqrt{a}}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)\cdot\sqrt{a}}\)

\(=\dfrac{\left(\sqrt{a}+2\right)^2}{\left(\sqrt{a}-2\right)\left(\sqrt{a}+2\right)\cdot\sqrt{a}}=\dfrac{\sqrt{a}+2}{\sqrt{a}\left(\sqrt{a}-2\right)}\)

\(=\dfrac{\sqrt{a}+2}{a-2\sqrt{a}}\)

14 tháng 8 2018

Bạn tham khảo cách chứng minh tại đây :

Câu hỏi của Nguyễn Huy Thắng - Toán lớp 10 | Học trực tuyến

Áp dụng : Theo BĐT \(AM-GM\) ta có :

\(a+b+c\ge3\sqrt[3]{abc}\)

\(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge3\sqrt[3]{\dfrac{1}{abc}}\)

Nhân vế theo vế ta được :

\(\left(a+b+c\right)\left(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\right)\ge3\sqrt[3]{abc}.3\sqrt[3]{\dfrac{1}{abc}}=3.3.1=9\)

Dấu \("="\) xảy ra khi \(a=b=c\)

22 tháng 6 2019

Áp dụng BĐT Cauchy cho 2 số dương:

\(\frac{a^2+3}{\sqrt{a^2+2}}=\sqrt{a^2+2}+\frac{1}{\sqrt{a^2+2}}\ge2\)

Dấu "=" xr khi \(\sqrt{a^2+2}=\frac{1}{\sqrt{a^2+2}}\Leftrightarrow a^2+2=1\left(vn\right)\)=> dấu "=" ko xra

=> \(\frac{a^2+3}{\sqrt{a^2+2}}>2\forall a\)

22 tháng 6 2019

Chị check thử câu trả lời của em bên h xem sao ạ (nếu ko truy cập được xin ib ạ,em gửi full link): 

Câu hỏi của Đừng gọi tôi là Jung Hae Ri - Toán lớp 9 | Học trực tuyến

17 tháng 5 2018
https://i.imgur.com/8TIBI9D.jpg