Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Vẽ tia By' là tia đối của tia By
Ta có:
∠ABy' + ∠ABy = 180⁰ (kề bù)
⇒ ∠ABy' = 180⁰ - ∠ABy
= 180⁰ - 135⁰
= 45⁰
⇒ ∠ABy' = ∠BAx = 45⁰
Mà ∠ABy' và ∠BAx là hai góc so le trong
⇒ By // Ax
b) Ta có:
∠CBy' = ∠ABC - ∠ABy'
= 75⁰ - 45⁰
= 30⁰
⇒ ∠CBy' = ∠BCz = 30⁰
Mà ∠CBy' và ∠BCz là hai góc so le trong
⇒ By // Cz
Bài này không khó,chỉ dùng kiến thức về song song(các góc sole trong,...)
Cái này thì mình thấy chắc suy ra trực tiếp luôn
Cộng vế với vế của ba đẳng thức ta đc :
\(x+y+z=2\left(ax+by+cz\right)\Rightarrow ax+by+cz=\frac{x+y+z}{2}\) (*)
Lấy (*) - (1) ta có : \(ax+by+cz-\left(by+cz\right)=\frac{x+y+z}{2}-x\)
<=> \(ax=\frac{y+z-x}{2}\Leftrightarrow a=\frac{y+z-x}{2x}\Rightarrow a+1=\frac{y+z-x}{2x}+1=\frac{x+y+z}{2x}\)
=> \(\frac{1}{a+1}=\frac{2x}{x+y+z}\)
CMTT với 1/b+1 và 1/c+1
=> ĐPCM
Ta có: \(x+y+z=\left(by+cz\right)+\left(ax+cz\right)+\left(ax+by\right)=2\left(ax+by+cz\right)\)
=> \(x+y+z=2\left(ax+by+cz\right)=2\left[\left(ax+by\right)+cz\right]=2\left[z+cz\right]=2\left(1+c\right)z\)
=> \(\frac{1}{1+c}=\frac{2z}{x+y+z}\) (1)
Tượng tự:
\(\frac{1}{1+a}=\frac{2x}{x+y+z}\) (2)
\(\frac{1}{1+b}=\frac{2y}{x+y+z}\) (3)
Cộng các vế của (1), (2), (3) ta có:
\(\frac{1}{1+a}+\frac{1}{1+b}+\frac{1}{1+c}=\frac{2\left(x+y+z\right)}{x+y+z}=2\) (ĐPCM)
Ta có x+y=ax+by+2cz=z+2cz
=> x+y-z=2cz
=> \(c=\frac{x+y-z}{2z}\Rightarrow c+1=\frac{x+y-z}{2z}+1=\frac{x+y+z}{2z}\)
\(\Rightarrow\frac{1}{c+1}=\frac{2z}{x+y+z}\left(1\right)\)
\(y+z=2ax+by+cz\Rightarrow y+z-x=2ax\Rightarrow a=\frac{y+z-x}{2x}\Rightarrow a+1=\frac{x+y+z}{2x}\)
\(\Rightarrow\frac{1}{a+1}=\frac{2x}{x+y+z}\left(2\right)\)
\(z+x=2by+ax+cz=2by+y\Rightarrow z+x-y=2by\)
\(\Rightarrow b=\frac{z+x-y}{2y}\Rightarrow b+1=\frac{z+x-y}{2y}+1=\frac{x+y+z}{2y}\)
\(\Rightarrow\frac{1}{b+1}=\frac{2y}{x+y+z}\left(3\right)\)
Cộng từng vế của (1)(2)(3) ta có
\(\frac{1}{a+1}+\frac{1}{b+1}+\frac{1}{c+1}=\frac{2x}{x+y+z}+\frac{2y}{x+y+z}+\frac{2z}{x+y+z}=\frac{2\left(x+y+z\right)}{x+y+z}=2\)
Ta có: 2x=4y=3z
\(\frac{a+b-c}{6}=\frac{b+c-a}{10}=\frac{c+a-b}{2}=\frac{a}{4}=\frac{b}{8}=\frac{c}{6}\)
\(\Rightarrow\frac{2ãx}{4}=\frac{4by}{8}=\frac{3cz}{6}=\frac{ax}{2}=\frac{by}{2}=\frac{cz}{2}\)
\(\Rightarrowãx=by=cz\)
Ta có ax + by = c ; by + cz = a
<=> cz - ax = a - c (1)
mà cz + ax = b (2)
Từ (1) và (2) => \(cz=\frac{a-c+b}{2}\Rightarrow z=\frac{a-c+b}{2c}\Rightarrow z+1=\frac{a+b+c}{2c}\)
=> \(\frac{1}{z+1}=\frac{2c}{a+b+c}\)
Tương tự ta có \(\frac{1}{x+1}=\frac{2a}{a+b+c}\); \(\frac{1}{y+1}=\frac{2b}{a+b+c}\)
=> P = \(\frac{1}{x+1}+\frac{1}{y+1}+\frac{1}{z+1}=\frac{2a}{a+b+c}+\frac{2b}{a+b+c}+\frac{2c}{a+b+c}=2\)