K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

4 tháng 10 2019

a)= x2-6x+8+3=x2-2.3.x+32+2 =(x-3)2+2 >0

b)= x2-2.x.2y+(2y)2+x2+2x+1+4 = (x-2y)2+(x+1)2+4 > 0

17 tháng 9 2021

\(x^2+4y^2-2x-4xy+4y+2018=\left[x^2-2x\left(1+2y\right)+\left(1+2y\right)^2\right]+2017=\left(x-1-2y\right)^2+2017\ge2017>0\)

14 tháng 1 2016

Tuấn Nguyễn: 100% k sai

6 tháng 3 2020

Bài 1 :

\(\frac{x^3-9x}{15-5x}=\frac{-x^2-3x}{5}\left(ĐKXĐ:x\ne3\right)\)

\(\Leftrightarrow5\left(x^3-9x\right)=-\left(x^2+3x\right)\left(15-5x\right)\)

\(\Leftrightarrow5x^3-45x=5x^3-45\) ( luôn đúng )

Do đó : \(\frac{x^3-9x}{15-5x}=\frac{-x^2-3x}{5}\left(x\ne3\right)\)

P/s : Bài này thì xét tích chéo của hai số thôi nhé @

25 tháng 6 2019

\(x^2+y^2-x+4y+5\)

\(=\left(x^2-x+\frac{1}{4}\right)+\left(y^2+4y+4\right)+\frac{3}{4}\)

\(=\left(x-\frac{1}{2}\right)^2+\left(y+2\right)^2+\frac{3}{4}\)

\(\ge\frac{3}{4}\)

Dấu "=" xảy ra khi \(x=\frac{1}{2};y=-2\)

25 tháng 6 2019

\(B=2x^2+4y^2+4xy-3x-1\)

\(=\left(x^2+4xy+4y^2\right)+\left(x^2-3x+\frac{9}{4}\right)-\frac{13}{4}\)

\(=\left(x+2y\right)^2+\left(x-\frac{3}{2}\right)^2-\frac{13}{4}\)

\(\ge-\frac{13}{4}\)

Dấu "=" xảy ra khi \(x=\frac{3}{2};y=-\frac{3}{4}\)

a: \(=\left(x-2y\right)^2=\left(18-2\cdot4\right)^2=100\)

21 tháng 6 2017

a,

\(x^2-4xy+4y^2=\left(x-2y\right)^2\)

Thay x=18;y=4 vào biểu thức

\(\left(18-8\right)^2=10^2=100\)

b, \(=\left(2x+1-\left(1-2x\right)\right)^2=\left(2x+1-1+2x\right)^2=16x^2=16.10000=160000\)

6 tháng 9 2018

1/ x^2 +4xy +4y^2 = (x +2y)^2

2/ -x^3 +9x^2 -27x+27= - (x^3 -9x^2+27x-27) = - (x-3)^3

3/ 8x^6 +36x^4y+54^2y^2+27y^3 = (2x^2+3y)^3

4/ x^3 - 6x^2y+12xy^2 -8y^3= (x-2y)^3

6 tháng 9 2018

1) x2 + 4xy + 4y2 = ( x + 2y )2

2) - x3 + 9x2 - 27x + 27 = ( 3 - x )2

3) 8x6 + 36x4y + 54x2y2 + 27y3 = ( 2x2 + 3y )3

4) x3 - 6x2y + 12xy2 - 8y3 = ( x - 2y )3

5) x2 + 4y2 +1 - 4xy - 2x + 4y = ( x2 - 2y - 1 )2

6) x2 + y2 + 4 + 2xy + 4x + 4y = ( x + y + 2 )2

4 tháng 8 2018

b, x+y2+z2 +2x-4y-6z+14=0

<=> (x2+2x+1)+(y2-4y+4)+(z2-6z+9)=0

<=> (x+1)2+(y-2)2+(z-3)2=0

=>(x+1)2=(y-2)2=(z-3)2=0

=>x+1=y-2=z-3=0

=> x=-1; y=2; z=3

c, 2x2+y2-6x-4y+2xy+5=0

<=> (x2+y2+4+2xy-4x-4y)+(x2-2x+1)=0

<=> (x+y-2)2+(x-1)2=0

=> (x+y-2)2=(x-1)2=0

=>x+y-2=x-1=0

=>x=1; y=1

17 tháng 6 2015

a) 4x2 - 12x + 11=4x2-12x+9+2=(2x-3)2+2

vì (2x-3)2\(\ge\)0

nên (2x-3)2+2 dương với mọi x

=>4x2 - 12x + 11luôn luôn dương với mọi x

b) x2 - 2x + y2 + 4y + 6

=x2-2x+1+y2+4y+4+1

=(x-1)2+(y+2)2+1

vì (x-1)2\(\ge\)0 ; (y+2)2\(\ge\)0

nên (x-1)2+(y+2)2+1 dương với mọi x;y

=>x2 - 2x + y2 + 4y + 6  luôn dương với mọi x;y

24 tháng 10 2016

a/B=x2+2x+2013