Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) (Em xem lại , câu này em hỏi rồi nhé)
A = 1.1 + 2.(1 + 1) + 3. (1 + 2) + ...+ 10.(1 + 9)
A = 1 + 2 + 1.2 + 3 + 2.3 + ...+ 10 + 9.10
A = (1 + 2+ 3 + ...+ 10) + (1.2 + 2.3 + ...+ 9.10)
Tính 1 + 2 + 3 + ...+ 10 = (1 + 10).10 : 2 = 55
B = 1.2 + 2.3 + ...+ 9.10
3.B = 1.2.3 + 2.3.(4 - 1) + ...+ 9.10.(11- 8) = 1.2.3 + 2.3.4 - 1.2.3 + ...- 8.9.10 + 9.10.11
3.B = (1.2.3 + 2.3.4 + ...+ 9.10.11) - (1.2.3 + ...+ 8.9.10) = 9.10.11 => B = 330
Vây A = 55 + 330 = 385
b) Số số hàng: (2n - 1 - 1): 2 + 1 = n
M = (1 + 2n - 1). n : 2 = n2 => M là số chính phương
\(1^3+2^3+3^3+4^3+5^3+6^3\)
\(=1+8+27+64+125+216\)
\(=441=21^2\)
Mình có 1 cách chứng minh biểu thức này đúng với mọi số tự nhiên n :) Bạn có thể tham khảo.
Ta sẽ sử dụng quy nạp.
Nếu bạn chưa học quy nạp thì mình giải thích ngắn gọn thế này : Bây giờ mình cần chứng minh biểu thức nào đó đúng với mọi n, ví dụ A chia hết cho n với mọi n, hoặc A > n với mọi n :). Số n chỉ là mình đặt ra, bạn có thể đặt a,b,c,d,... tùy ý, miễn là nó tượng trưng.
Bây giờ ta có 1 số bất kỳ thỏa mãn biểu thức đó, tức là giả sử tồn tại số n nào đó mà khiến cho biểu thức đúng, ta chỉ cần chứng minh số liền sau của k cũng thỏa mãn thì biểu thức hoàn toàn đúng với mọi n.
Ta sẽ chứng minh \(1^3+2^3+...+n^3=\left(1+2+3+...+n\right)^2\)
Với n = 1 thì đẳng thức đúng.
Với n > 1. Coi tồn tại số n thỏa mãn đẳng thức trên. \(\Rightarrow1^3+2^3+...+n^3=\left(1+2+3+...+n\right)^2\)
Ta sẽ chứng minh n + 1 cũng thỏa mãn.
Ta có :
\(1^3+2^3+...+n^3+\left(n+1\right)^3\)
\(=\left(1+2+3+...+n\right)^2+\left(n+1\right)^3\)
\(=\left[\frac{n\left(n+1\right)}{2}\right]^2+\left(n+1\right)^3\)
\(=\left(n+1\right)^2.\frac{n^2}{4}+\left(n+1\right)^2\frac{4n+4}{4}\)
\(=\frac{\left(n+1\right)^2\left[n^2+4n+4\right]}{4}\)
\(=\frac{\left(n+1\right)^2.\left(n+2\right)^2}{4}\)
\(=\left[\frac{\left(n+1\right)\left(n+2\right)}{2}\right]^2\)
Chắc chắn \(\left(n+1\right)\left(n+2\right)\)chia hết cho 2, nên biểu thức đó là một số chính phương.
Vậy biểu thức này đúng với mọi n :\(1^3+2^3+...+n^3=\left(1+2+3+...+n\right)^2\)
Ví dụ bài của bạn vừa rồi :
\(1^3+2^3+...+6^3=\left(1+2+3+...+6\right)^2=21^2\)